学年

教科

質問の種類

数学 高校生

数学 三角形の面積の範囲です! 【1】~【2】の問題がなんの公式使ってるのか分かりません…途中式をふまえてお願いします🙏🙇‍♀️

基本 例題 89 三角形の面積 3点A(3,5), B (5, 2), C(1,1)について、次のものを求めよ。 (1) 直線BC の方程式 (3)点Aと直線 BC の距離 (2) 線分 BC の長さ (4) △ABCの面積 0000 基本88 指針 この問題は、3つの頂点の座標が与えられた三角形の面積を求める手順を示したものであ る。 底辺を線分 BC, 高さを点Aと直線 BC の距離とみて、 三角形の面積= 1/2×(底辺の長さ)×(高さ) に必要なものを、(1)~(3)の段階を踏んで求める。 (1) 直線 BC の方程式は y-2=1-3(x-5) よって x-4y+3=0 (2) 線分BCの長さは ****** √(1-5)+(1-2)=√17 (3)点Aと直線 BC の距離んは,①から 13-4-5+31 14 h= √1²+(-4)² √17 (4)(2)(3) から, △ABCの面積Sは 14 S=1/2BC.h=1/12/17 1/17 => ・17 . √17 == A(3,5) 2点間の距離。 h B (5,2) ①x-4y+30 4点(x, y)と直線 C(1, 1) ax+by+c=0)の距 離は 検討 3つの頂点の座標が与えられた場合の三角形の面積 3点0(0,0), A (x1,y),B(x2,y2)を頂点とする三角形の面積Sは lax+by+cl √2+62 S=1/2/1x |xiy-xyl A 証明 直線 OAの方程式は yix-x₁y=0 線分 OAの長さは OA=√x²+ y² Lyx2-xiyal BOA の距離は h= √√√y²+(-x1)² ゆえに S=1/20h=1/12 ナ 12x12 \x132-x21 x+y" 2 上の例題において, C(1, 1) が原点0にくるように△ABC を平行 移動すると、 A を適用できる。 C(1,1)→0(0, 0) より. A(3,5)→A' (2, 4), B(5,2)→B'(4, 1) となるから △ABC=AOA'B'=1/212・1-4-4|=7 なお, 点Aや点Bが原点にくるような平行移動でもよい。 B(x2, y2) S A(x₁, y₁) B B'

解決済み 回答数: 1
数学 高校生

問題44の(3)や、問題45の(2)のような式変形を、こんな天才的な発想出来ないでしょ!と思うのは僕だけでしょうか。解説を見れば何をしているのかはわかるのですが、問題によってやり方も様々で、慣れとかでどうにかなるものなのかと思ってしまいます。 何かコツや、式変形の対応デッキ... 続きを読む

基礎問 76 MAN AV 44 はさみうちの原理(I) 次の問いに答えよ. (1) すべての自然数nに対して, 2">n を示せ. (2) 数列の和 Sm= (1)をnで表せ。 (n=k(k≧1) のとき,2">k と仮定する. 両辺に2をかけて, 22k ここで, 2k-(k+1)=k-1≧0 (≧1 より) ..2'+'>2k≧k+1 すなわち, 2+1>k+1 よって, n=k+1 のとき, ① は成りたつ. (i), (ii)より, すべての自然数nについて, 2">n は成りたつ. (3) lim Sm を求めよ. (1) 考え方は2つあります。 ... 1 2 n (2) Sm = + 4° 4' +・・・+ ...... ② 4"-1 1/Sn= 1 n-1 n +・・・+ + ......3 4₁ 4"-1 4" ② ③ より 3 (IIB ベク4 ) Sn= + 1 1 n -(+) +...+ n 4' 4"-1 -Sn= 4 1 4" I. (整数)” を整式につなげたいとき, 2項定理を考えます。 II. 自然数に関する命題の証明は数学的帰納法. (IIB ベク137 (2) 本間のΣの型は, 計算では重要なタイプです. (IIB ベク121 S=Σ(kの1次式)rk+c (r≠1) は S-S を計算します。 (3) 極限が直接求めにくいとき, 「はさみうちの原理」 という考え方を用います。 bn≦a≦cm のとき .. Sn= n (3)(1)より2">n だから, (2")'>n . 4">n²=0<< 20< n 4 4-1 n lim40 だから、はさみうちの原理より lim 11-∞ n n - 4-1 -=0 limb= limcn=α ならば liman = α →00 11-00 この考え方を使う問題は,ほとんどの場合, 設問の文章にある特徴がありま す. (ポイント) さらに, lim lim (14) "=0 より lim.S,=- 16 11-00 9 「ポイント 解答 (1) (解Ⅰ) (2項定理を使って示す方法) (x+1)"=2,Chr" に x=1 を代入すると k=0 2"=nCo+mCi+nCz+... +nCn n≧1 だから 2"≧Co+nCi=1+n>n .. 2">n (解II) (数学的帰納法を使って示す方法) 2">n ...... ① (i) n=1のとき (左辺) =2, (右辺) =1 だから, ①は成りたつ 演習問題 44 極限を求める問題の前に不等式の証明があれば, はさみうちの原理を想定する 次の問いに答えよ. (1) すべての自然数nについて, 不等式 3"> n" が成りたつこと 数学的帰納法を用いて証明せよ。 "k =215730 (n=1,2, …) とおく。このとき, (2) Sm= 2 k=1 1 n 3 3+1 (3) lim Sm を求めよ. 11-00 が成りたつことを示せ. CS CamScanner 第4章

解決済み 回答数: 1
数学 高校生

60番の(2.ア)と61番の(1)についてですが、なぜ全く同じ問題なのにやり方が異なるのでしょう。どちらの問題も三角関数の合成をし、与えられたθやxの範囲をずらすと思うのですが、その時に上と下の範囲がsin〜とした時に解ける(有名角になる?)ときは61番のようにして、そう出... 続きを読む

99 基礎問 98 第4章 三角関数 60 三角関数の合成 (II) (1) As / のとき,f(x)=√3cosx+sing の最大値,最 小値を求めよ. (2)y=3sinzcosz-2sinz+2cost (OIS)について、 △ (7)t=sinz-cosz とおくとき,tのとりうる値の範囲を求め 1)-(-2)+/12--1 (i)は,2sin 1/2 を計算してもよい。 この場合は、加法定理を利用 します。 (+) (a)は、2sinx を計算した方が早いです. (2)(7)t=sinz-cosz=√2 sin(エース) この程度の合成は、 すぐに結果がだせる まで練習すること ytの式で表せ。 yの最大値、最小値を求めよ. (1) sin=t (または, cosz=t) とおいてもtで表すことができ 精講 ません. 合成して,を1か所にまとめましょう。 (2)IAのZ2で学びましたが、ここで,もう一度復習しておきま しょう. sin, COS, 差, 積は, sin'stcos'z=1 を用いると, つなぐことができる. 「解」 答 (1)/(x)=2(sinz.cos y + cosz.sing) =2sin (+4) 合成する だから、 sin(-4) ..-1≤t≤1 (イ) t2=1-2sincos だから 3sin.rcos.(1-1) " y=1/12 (1-19-21=-12/21-2t+2号/2 y=−3 (t+²²)² + 1/3 (−1≤t≤1) (ウ) y=- 右のグラフより, 最大値 12 最小値 -2 0 2 0 ポイント 合成によって、2か所にばらまかれている変数が1か 所に集まる 第4章 (i) 最大値 7 1/3 = 1/2 すなわち、24のとき (1)-√√√√√6+√2 ・+ = (6)最小値 +1=22,すなわち、エ のとき cs CamScanner でスキャン 演習問題 60 y=cosx2sincosx+3sin's (xls) ...... ① について, 次の問いに答えよ. (1)① を sin2x, cos 2x で表せ . (2) ①の最大値、最小値とそのときのェの値を求めよ。

解決済み 回答数: 2