学年

教科

質問の種類

数学 高校生

7 ①サが③になる理由が分かりません。1枚めの写真の右下にグラフを書いたのですが、どうやったら2次関数で表せるのですか? ②シスセソが分かりません。解説を読むとy=e(x-p)の2乗とあるのですが、この式に➕qをしなくて良い理由が知りたいです。y=e(x-p)の2乗➕qだ... 続きを読む

太郎さんと花子さんは,先生から出された次の問題について考えている。 問題 座標平面上に5点A(1,6), B(2.7), C(-2,-9), D(-4,-9), E (-7, 21) がある。 (i) 2次関数y=f(x) のグラフが、 3点 A, B, C を通る。 f(x) を求めよ。 (i) 2次関数y=g(x) のグラフが, 3点C, D, E を通る。 g(x) を求めよ。 先生: 2次関数のグラフの特徴をいかして, 2次関数の置き方を工夫できましたね。2次関数は, グラフが通る3点が与えられればただ一つに定まりますが、通る点から2次関数の置き方を 工夫すると、面倒な計算を避けることができますね。 では、次の問題を考えてみてください。 太郎: f(x) は2次関数だとわかっているから、f(x)=ax+bx+c とおいて計算すれば, a, b,c の値を求めることができそうだね。 3a+b=1 花子: f(x) は2次関数だから,ア という条件が必要だよ。 -730-36--15 太郎: そうだったね。 3点を通る条件が順に 49:16 ic=-a-h+g+b+c= 46-29-0-6=7, Bath=1 4-4 C-6-1774-6 a+ エンb+c=70-21-6-1+5=-930-392-15 3a+4=1 805-3 =(-4546 カン6+c=-9 a:-1 だから、この連立方程式を解くと, α = [キク h コクと求まるね。 でも, (ii)で同じことをしようとすると, 計算が面倒だね。 花子 2次関数のグラフの対称性を使うともう少しうまくできそうだね。 太郎: たしかに, 2点C, Dのy座標が等しいということから も大きいものは,頂点の座標が セ 先生: よくできました。 問題 2次関数のグラフがx軸に接し、2点 (1,1) (3,4)を通るとき、この2次関数を求めよ。 先生: この問題は、接する点の座標がわかっていないから、2次関数はただ一つに定まるかどうか わかりません。これまでの2人の学習をいかして、 2次関数の置き方を工夫して考えてみま しょう。 花子:できました。このような2次関数は2つあり、このうち、グラフの頂点のx座標が最 ス 51 ソリとなりますね。 (2) g(x)= サ ~に当てはまる数を求めよ。 とすることができるね。 花子: g(x)= サ とした方が, (i) と同じようにするよりも計算が楽にできそうだね。 (1)イ~ コに当てはまる数を求めよ。 ア の解答群 ⑩ a=1 ① a=-2 2 a=0 ③ a > 0 ④ a<0 の解答群 ⑩ d(x-3)2-9 ① d(x-3)2 +g ② d(x+3)2-9 ③ d(x+3)+q E. 21 -4 -2 0 C -9 -18- f(x)=ax2+bx+c sayaoc = 1 (qa+3+C=4 <<-19-> (配点 15) <公式・解法集 13

解決済み 回答数: 1
数学 高校生

⑶の問題で、解答の黒線の部分なんですけど、三分のニをニ乗していくと小さくなると思うんですけど、なぜ小なりイコールなんですか??

例題 17 漸化式と極限 (3) a=1, an+1=√2+3 (n=1,2,3, ......) で定義される数列{am} について,次の問いに答えよ. (1)数列{an} が極限値αをもつとき,α の値を求めよ. (2)(1) αについて, anti-alla-al を示せ. (3) lima=α であることを示せ **** 「考え方」 (1) lima=α のとき, liman+1=αであるから, →:00 YA y=x これを与えられた漸化式に代入して考える。 y=√2x+3 求めたαが条件に合うか確認が必要.. (2)(1) で求めた α を代入し, 漸化式を用いて不等式の 左辺を変形する. a2a3 (3) 実際に lima を求める. はさみうちの原理を利用する. a=1 00+11 解答 (1) lima=α とすると, liman=liman+1=α なので, 無理方程式 8118 漸化式 an+1=√2+3 より α=√2α+3 ... ① 両辺を2乗して, α = 2a +3 より, α=-1 は ①を満たさないから. a=3 (2)|a,+1-3|=|√2a,+3-3|=| 2a,+3)-9 α=-1,3 √2an+3 +3 1 == -|2a-6| √2an+3+3 √2an+3+3 よって, a,+1-3|22|47-31は成り立つ。 == la-3≤an-3 (3)(2)より14,-31010,13| 2\n-1 2\2 n-2 3 ここで,4=1より、0a,-3=2....... \n-1 2\n-1 (p.98 参照) a²-2a-3=0 (a+1) (α-3)=0 α=-1, 3 が①を満 たすか確認する. 分子の有理化 √2+3≧0 より √2a+3+3≥3 √2a, +3+3 3 (2)をくり返し用いる. |-3|=|1-3| |=|-2|=2 Focus ② lim2(12/3) 0 とはさみうちの原理より、 →∞ lim|a-3|=0 11-0 よって, lima=3 となり、題意は成り立つ. liman=a= liman+= a 8-8

解決済み 回答数: 1
数学 高校生

エオがわかりません。 解説で言ってる事がわかりません。 3枚目の方法で自分で解いてたのですが、計算がやばいことになってしまいこの式を解けば答えは求まるのですが共通テストなので時間がかかってしまうと思い別の方法がないかと解説を見たのですが、解説が何を言ってるのかがわからず、悩... 続きを読む

の前に、 第2問 (配点30) (ml) 10000.0 ((l) [1] ある店で商品の価格の変更を検討している。 次の売り上げ個数についての 定のもとで、できるだけ売り上げ総額が大きくなるように価格を決めたい。ただ 10000円 変更後の価格, 売り上げ個数は正の値をとる範囲で考えるものとする。また、 100 消費税は考えないものとする。 e 1502 草) 100.0 avee.0 8970.0 8180.0 sace.0 ST80.0 1201.0 208.0 81-01.0 89$1.0 asee.o ers1.0 売り上げ個数についての仮定 0008.0 は整数 kは正の定数とする。 8210 TTB6.0 01.0 8054.0 8180.0 x% 値上げすると、 売り上げ個数は kx % 減少する。 ただし、0の 2188.0. 80010 80 が 「kx % 減少する」 とは 「-k.x % 増加する」こととする。 き 「x% 値上げする」 とは, 「-x% 値下げする」 こととし, 売り上げ個数 8825 120 818.0 DAYS.O 18 T088.0 100.0 10882118 asser 02.0 0108.0 E8 CASE.O 1180.0 0008.0 8020 08810 8898.0 10-100 ENG.0 808.0 M assi.0 8000.0 0488.0 rese.0 3000000 18.0 1000 ×0.3 3000 TOON.O (1) 商品 A の現在の価格は1000円で、年間の売り上げ個数は3000個である。商 品 A の材料費が上昇しているため、値上げを考えている。すなわち、売り上げ 8001.0 9685.0 af£0.0 個数についての仮定においてx>0とする。また,過去のデータより,商品 A 2 4 ・31 13 についてはk = 1/3 であることがわかっている。 0188.0 1180.0 US88.0 72 4 Clae.0 AP Cual. ICET 8183.0 818.0 8180 ( 20000 8010 A 1300円 30× COTP.0 0000.0 -2008.0 00/3120000 BEG 3000000 ALL (200000 (1)商品 A について, 30% 値上げするとき, 売り上げ個数は アイ % 減少 ST28.0 ersa.0. 0200-24002 DANED 31200001800 BATO.0 18 8180.0 218.0 し, 売り上げ総額は ウ % 増加する。 また, 30% 値上げする以外に, 1184.0 2002.0 . 8188.0 エオ % 値上げするときも, 売り上げ総額は 2008.0 ウム % 増加する。 8008.0 1.0 Besa.o $180.0 sage.0 88 1088.0 0805.0 8818.0 8200.(0047 TO 988 1000×100 6038.0 TACT.0 1838.0 1 +3000 1002.0 ICAT.O 1938.0 商品 A の売り上げ総額が最大になるのは, asee.0 0000.0. ある。 GOOO.I カキ 値上げするときで 00 0000.1 IYOV.0 1505.0 a (数学Ⅰ 第2問は次ページに続く。)

解決済み 回答数: 1