学年

教科

質問の種類

数学 高校生

四角六、七回答なくしてしまって答えわからないので解説と答え教えてください🙇‍♀️🙇‍♀️

確率 6 4枚の赤色のカード1, 2, 3, 4, 4枚の青色のカード 5, 5, 6, 6 があり, 何枚かのカードを横一列に並べて整数をつくる。 (1)赤色のカードのみを並べてできる3桁の整数は全部で何個あるか。 7(2) 青色のカードのみを並べてできる3桁の整数は全部で何個あるか。また,赤色のカード 2枚と青色のカード1枚を並べてできる3桁の整数は全部で何個あるか。 9(3) 赤色のカード2枚と青色のカード2枚を並べてできる4桁の整数は全部で何個あるか。 また、赤色のカードと青色のカードをどちらも1枚以上並べてできる4桁の整数は全部で 何個あるか。 (配点 20 ) 平面図形 (未習) 7 AB=6, BC =4, CA = 5 の △ABC があり,△ABC の重 心をGとする。直線AG と辺BC の交点を M, 3点A, M, Cを 通る円と直線ABの交点のうち, Aでない方の点をDとする。 A AG 5(1) 線分 BMの長さを求めよ。 また, の値を求めよ。 AM G D 7 (2) 線分 BD の長さを求めよ。 また, 2直線AM, CD の交点をE, B CF M C 直線BE と辺 ACの交点をF とするとき の値を求めよ。 FA AE 8(3) (2) のとき, この値を求めよ。 また, △ABC の面積をSとするとき, △EFGの面積 EM をSを用いて表せ。 (配点 20)

回答募集中 回答数: 0
数学 高校生

数学Aの問題です。DGの中点Hは▲BDGの外心である。というところが理解できないです。なぜ外心になるのですか?よろしくお願いします。

138 (1)円と直線に関する次の定理を考える。 3点P,Q,R は一直線上にこの順に並んでいるとし,点Tはこの 定理 直線上にないものとする。 このとき, PQ・PR=PT2 が成り立つな らば、直線PT は 3 点 Q,R, T を通る円に接する。 この定理が成り立つことは,次のように説明できる。 直線 PT は 3点 Q,R,Tを通る円0に接しないとする。このとき,直線 PT は円Oと異なる2点で交わる。直線 PT と円0との交点で点Tとは異なる点 を T' とすると, PT・PT'= イが成り立つ。 点と点T' が異な ることにより, PT・PT' の値と PT2の値は異なる。 したがって, PQ・PR=PT2に矛盾するので,背理法により,直線 PT は3点 Q,R, T を通る円に接するといえる。 ア イ の解答群(解答の順序は問わない) PQ ①PR 2 QR 3 QT ④RT (2)△ABCにおいて,AB= BC= AC=1 とする。 3 4 ウ このとき,∠ABC の二等分線と辺 AC との交点をDとすると,AD= I である。 直線 BC 上に, 点Cとは異なり, BC=BE となる点Eをとる。 数学A AC ∠ABE の二等分線と線分AE との交点をFとし、直線ACとの交点をGとす オ △ABFの面積 キ ると, である。 AG カ △AFGの面積 ク ケ 線分 DG の中点をHとすると, BH= である。 また, AH= コ シ’ A ス CH= である。 セ △ABCの外心をOとする。 △ABCの外接円0の半径が ることから、線分BH を 1:2に内分する点をI とすると IO= [ト ナ] であることがわかる。 ニヌ タチ であ [22 共通テスト追試] SAL

回答募集中 回答数: 0