学年

教科

質問の種類

数学 高校生

(2)の問いについてです。 定点となるMを右の写真の解のような形で表してはいけないのでしょうか。ダメな理由も教えていただけるとありがたいです

Check 例題 360 直線のベクトル方程式(1)円3 07*** (1) 異なる2点A(a),B() に対して, p=(1-t)+t6 (1) 表される図形はどのような図形か. (2) 3点A(a),B(b),C(c) を頂点とする △ABC がある. 辺ACを 21 に内分する点M () を通り,辺ABに平行な直線のベクトル 方程式をa, 6, こと媒介変数を用いて表せ 考え方 (1) ja+(-a) と変形すると,点P(j) は点Aを通り, ABに平行な直線上にあ ることがわかる (2)M(m)を通り、ABに平行な直線のベクトル方程式は,p=m+tAB と表せる。 解答 (1) = (1-1)+16=a+1(-a) 点P()は,点Aを通り b=a+1(6-9) 1 変化する 定点 A1=0 6-d=ABに平行な直線, すなわち直線AB上を動き, b-a a t=0 のとき, = より, 点Aの位置 t=1 のとき, = より,点Bの位置 t=1 B tが0から1まで変 わるとき、点Pは点 にある。 よって、求める図形は, 線分AB である. AからABの向き (2) 求める直線上の任意の点をP() とする.点M(㎡) に, Bまで動く。 a+2c は,辺ACを2:1 に内分する点だから, m= 3 求める直線は辺AB と平行だから,その方向ベクト ルは, AB (S-C A(a) よって,=m+tAB=+2c+(-a) P(p) (M(m) 3 すなわち, = (1/31) a1+1+1/2/30 B(b) c(c) AB JS Focus 点A(a)を通り, d に平行な直線のベクトル方程式は, p=a+td 2点A(a),B(b) を通る直線のベクトル方程式は, b=(1-t)a+tb とくに, t のとき, 線分AB を表す 足して1

未解決 回答数: 0
数学 高校生

この、速度の求め方はなぜ微分を使うんですか? すみません、全然分からなくて💦

** a 入する。 では, 無線も (2) B 201 ある。 運動と微分 式への応用 **** 時刻における点Pの速度および、点Pが運動の向きを変 える時刻を求めよ. 半径1cmの球形の風船があり、 空気を入れはじめてから、半径に 0.5cm/sの割合で増加しているという.4秒後の体積の増加する。 度を求めよ. 「刻における座標s が s=f(t) のとき 時刻 方 (1) 速度に関する問題である。 直線上の動点Pの時 ds dt における速度はv=f'(t) 速さは v また、運動の向きが変わる速度の符号が変わる (2)変化率に関する問題である。 変化する量Vが時刻tの関数で、V=f(t) のとき dV=f'(t) (時刻 t における)変化率 dt 球の体積Vをtを用いて表すとよい。 (1)時刻 t における点Pの速度を”とすると、このと きの座標は,s=-6f2+9t-2 であるから, ds S=3t-12t+9=3(t-1)(t-3) v=- dt よって、 速度は3t-12t+9 時間 位置 速度 tについて微分する. 点Pが運動の向きを変え るのは、速度vの符号が変 わるときであるから,右の 表より, t=1,3 t 1 3 v 0 0 (2) t秒後の半径をrcm, 体積をVcm とすると, r=1+0.5t より 4 V=1/22/12(1+0.5t) = (21) dV πC したがって, dt 6 dV t=4 のとき, dt よって、増加する速度は, 6xxan 3(2+1)²+1=72 (2+1)² (2+4)=18 18cm3/s 球の体積V=132 最初の半径が1cmで 0.5cm/sの割合で増加 1+0.5t =1+1/21=1/2(2+1) [{f(x)}")' ={f(x)}^-'.f'(x) 第6章 Focus 時刻 t とともに変化する位置や量は、時刻 t で微分して扱う 練習 201 ** (1) 直線上の動点Pの時刻における座標 s は, s =f-9t+15t-6である。 時刻における点Pの速度および、点Pが運動の向きを変える時刻を求め 主面積の増加する速度を求めよ.

未解決 回答数: 1
数学 高校生

この問題の(ⅰ)はa=0の時をなぜ確かめているんですか?

368 第6章 微 Think 例題 198 実数解の個数(2) **** 3次方程式-3a'x +40=0が異なる3つの実数解をもつとする。栄 数αの値の範囲を求めよ. 114 考え方 例題 197 (p.367) のように定数を分離しにくい。 このような場合は,次のように3次 数のグラフとx軸の位置関係を考える。 3次方程式 f(x)=0が異なる3つの実数解をもつ 3次関数においては、 y=f(x) のグラフがx軸と3点で交わる (極大値)>0 かつ (極小値)<0 (極大値)×(極小値) < 0 (極大値)> (極小値 ) 解答) f(x)=x-3ax+4a とおくと f'(x)=3x²-3a²=3(x+a)(x-a)...... ① 方程式 f(x) =0 が異なる3つの実数解をもつ条件は、 y=f(x) のグラフがx軸と3点で交わること つまり、(極大値)×(極小値) <0 となることである. (i) ①より、f'(x)=0 のとき, a>0のとき、 y=f(x) A f(a)f(B) f(x)が極値をもっ f(x)=0が異なる? つの実数解をもっ f'(x)=0の 判別式) > 0 x=-a,a x -a 増減表は右のよう f'(x) + 0- 20 a (p.353 参照) + 直接, 増減表を書いて になる. f(x) 極大 極小 極値を調べたが、 a0 のとき, X a -a 増減表は右のよう になる。 f'(x) + f(x) 0 20 (+) 極大 極小 a=0 のとき,f(x)=xより,f(x)=0 の解は x=0 (3重解)となり不適 (ii) f(-a)xf(a)=(2a3+4a)(-2a3+4a) =-4a² (a²+2)(a2-2)<0 (i)より, a=0 であるから,a>0,d²+2>0より, a²-2>0 これより、 (a+√2) (a_√2)>0 a<-√2√2<a よって、求める αの値の範囲は, a<-√2√2<a 3次方程式(x)=0が異なる3つの実数解をもつ y=f(x)のグラフがx軸と3点で交わる (極大値)>0かつ (極小値) <0 (極大値) X (極小値) < 0 f'(x) =0 の判別式を 使ってもよい。 判別式をDとすると D=-4-3(-3a²) =36a2>0 より a<0, 0<a (a=0) となる. Focus 注> 例題198 で (1) f(x) が極値をもつ (Ⅱ) (極大値)×(極小値) <0 満たさないと (極値

未解決 回答数: 1
数学 高校生

⑶の問題で、解答の黒線の部分なんですけど、三分のニをニ乗していくと小さくなると思うんですけど、なぜ小なりイコールなんですか??

例題 17 漸化式と極限 (3) a=1, an+1=√2+3 (n=1,2,3, ......) で定義される数列{am} について,次の問いに答えよ. (1)数列{an} が極限値αをもつとき,α の値を求めよ. (2)(1) αについて, anti-alla-al を示せ. (3) lima=α であることを示せ **** 「考え方」 (1) lima=α のとき, liman+1=αであるから, →:00 YA y=x これを与えられた漸化式に代入して考える。 y=√2x+3 求めたαが条件に合うか確認が必要.. (2)(1) で求めた α を代入し, 漸化式を用いて不等式の 左辺を変形する. a2a3 (3) 実際に lima を求める. はさみうちの原理を利用する. a=1 00+11 解答 (1) lima=α とすると, liman=liman+1=α なので, 無理方程式 8118 漸化式 an+1=√2+3 より α=√2α+3 ... ① 両辺を2乗して, α = 2a +3 より, α=-1 は ①を満たさないから. a=3 (2)|a,+1-3|=|√2a,+3-3|=| 2a,+3)-9 α=-1,3 √2an+3 +3 1 == -|2a-6| √2an+3+3 √2an+3+3 よって, a,+1-3|22|47-31は成り立つ。 == la-3≤an-3 (3)(2)より14,-31010,13| 2\n-1 2\2 n-2 3 ここで,4=1より、0a,-3=2....... \n-1 2\n-1 (p.98 参照) a²-2a-3=0 (a+1) (α-3)=0 α=-1, 3 が①を満 たすか確認する. 分子の有理化 √2+3≧0 より √2a+3+3≥3 √2a, +3+3 3 (2)をくり返し用いる. |-3|=|1-3| |=|-2|=2 Focus ② lim2(12/3) 0 とはさみうちの原理より、 →∞ lim|a-3|=0 11-0 よって, lima=3 となり、題意は成り立つ. liman=a= liman+= a 8-8

解決済み 回答数: 1
数学 高校生

赤丸で囲んだところについてです。楕円になる理由は赤丸で囲んだ範囲の下部分の記述だけで十分だと僕は思ったのですが、なぜ赤丸部分を考える必要があるのでしょうか。教えていただきたいです。

2-142 (490) 第6章 式と曲線 例題 C262 楕円 双曲線となる軌跡 : **** 外接し, 円 C2 に内接する円Cの中心Pの軌跡を求めよ. ただし, 円 C 2つの円C: (x-2)2+y^2=4,C2: (x+2)2 +y'=36がある. 円に の半径 r>0 とする. 考え方 円 C (中心 0 ) に円 C が外接するから, O.P=2+r C2 (中心O2) に円 C が内接するから, OP=6-r したがって、0P+OP=8 ~定) T 解 PC, は中心O (2,0), 半径2の 円で, 円 C2は中心O2(-2,0), 半 径60円である。 r C 6 P つまり、 (中心間の距離 0.02) 2つの円の半径の差) =4 T1 -202 101 14x が成立し, C, と円 C2 は 点A(4,0) で接する 円Cと円 C の接点を TL, 円 C C2 の接点を T2 とす る。 円 C は円 C に外接するから, 円 Cは円 C2 に内接するから, OP=0T+TP=2+r O2P=O2T2-T2P=6-r よって, OP+O2P=8 より 求める軌跡は, 20 (20) O2(-2,0) を焦点とし, 焦点からの距離の和 が8の楕円,すなわち、楕円=1である。①に 12 ただし, 点Pと点A(4, 0) が一致するとき 円Cの半径 r=0 となり,r>0 に反するから、 楕円上の点(40) は除 く. Focus x² y² a² (a>b>0) とすると, |2a=8va-F-2 平面上の2定点からの距離の和が一定である点の軌跡・・・・・楕円 距離の差が一定である点の軌跡・・・ 双曲線 注 点P(x,y) とすると, OP2+rより(x-2)+y=2+r 02P=6-r より√(x+2)2+y=6-r 練習 ①+②より(x-2)2+y^+√(x+2)2+y=8 として後は、例題 C2.48 (2)の解答のように考えることもできる。 ただし、半径 r>0より, 楕円上の点A(4, 0) は除く. 2つの円 C (x+2)'+y=9, C2 (x-2)^2+y=1 がある 円 C.C.の両方 C2.62 に外接する円Cの中心Pの軌跡を求めよ。 ただし, 円 C の半径とする。 ***

解決済み 回答数: 1
数学 高校生

この問題の(4)なんですが、2枚目の鉤括弧を書いたところまでは分かるのですが、(-1)がでてくる辺りから分からなくなってしまいます!誰か解説してくださると嬉しいです。宜しくお願いいたします🙇

② 24+1-√34 4+4+1=0 (n-1)(w+w+1) = 0 151110 x2x+1-03 高次方程式 10 例題 55 1の3乗根 **** -1+√3i @= 2 とするとき 次の式の値を求めよ. ただし, n は整数と する. (1) W2005 (2) 1+ + 1 @ w" 1 (3)(1+ω-ω^) ( 1-w+ω^) (4) ω'+ (ω+1)2"-1 (岡山県立大改) 考え方 ω は x + x +1=0の解であり,1=(x-1)(x²+x+1)=0 より は =1の 解でもある.つまり,1の3乗根は1ww なので は1の3乗根の虚数のうち の1つである. (ωキ1 であることに注意する.) 75 __1+√3i 解答 W= より、 20+1=√3i 2 両辺を2乗して (2ω+1)=3i, 4ω'+4ω+1=-3 これから使う性質 ついてまず証明し おく. したがって, w2+w+1=0 (1) W2005W2004xw=(ω3)668Xw また, ω-1=(ω-1) (ω'+w+1)=0 より =1 -1+√3i =1668xw=w=- 2 2004=3×668 ω=1 が利用でき るように変形する 1 1 w²+w+1 0 (2)1+ + =0 @ W² W (3) ω²+w+1 = 0 より, 1+w=-w m よって, (1+wlω^)(1-e+w) 通分する. 1+ω°= W 与式に代入でき www うな2種類の変 行う. M =(-ω-)(-ω-) =-2ω²×(-2ω)=4ω=4 (4) ω'+w+1=0 より, w+1=-w したがって, (ω+1)2" '=(-ω^)2=(-1)2" 'ω =(-1)xω-2=3(x-1)Xw" + -1 2(2n-1) まずは (+1) 2 を考える. n+1 2n-1は奇数 =-(13)"-1.1"+1=-W"+1 (−1)'"'=-1 よって, W"+1+(+1)2"-1=W"+"+1=0 '=1 を使える |-2を分け Focus の2大公式 =1, ω°+w+1=0 練習 55 (1)x1=0 の虚数解の1つを とするとき、次の式の値を求めよ. (ア)+ω'+1 (イ) 1+w +ω°+w'+ω'+ω°++w" *** -1-√3i (2) w=- とするとき、次の式の値を求めよ. ただし, n は整数 2 (7) (w²-w+1)³ (1) (1-w)(1-w²)(1-w') (1-w³) 2+(1) 3n

解決済み 回答数: 2