学年

教科

質問の種類

数学 高校生

緑で囲った部分でなぜ余りが2になるかが分かりません…よろしくお願いします💦

重要 例7 整数の問題への二項定理の利用 kを自然数とする。 2* を7で割った余りが4であるとき, kを3で割った余り 2であることを示せ。 -3で割った余りが 0 1,2 指針 271+4(Zは自然数) とおいてもうまくいかない。 ここでは, (gはkを3で割ったときの商)のいずれかで表されることに注目し,k=3q+20 kが 3g, 3g+1, 3g+2 合だけ2を7で割った余りが4となることを示す方針で進める。 例えば,k=3gのときは, 2=239=8°であり, 8°= (7+1)として 二項定理を利用 ると2を7で割ったときの余りを求めることができる。 か2である。 kを3で割った商をg とすると, kは 3g, 3g+1, 3g+2 3で割った余りは0 k=3, 6, 9, 解答 のいずれかで表される。 ...... [1] k=3gのとき, g≧1 であるから 2'=239=(23)'=8°=(7+1)^ =,Co79+,C179-1++,C9-17+,Cq =7(,C,79-'+,C179-2 ++,Cq-1 +1) よって2を7で割った余りは1である。 [2] k=3g+1のとき, g≧0であり個 g=0 すなわち k=1のとき g≧1のとき 2=2=7.0+2 2k=239+1=2・239=2・8°=2(7+1)^ =7.2(C79-1+,C179-2+...... +9C9-1)+2 よって,2を7で割った余りは2である。 [3]=3g+2のとき, g≧0であり g=0 すなわちん=2のとき q≧1のとき 2=239+2=22・239=4・8°=4(7+1)。 2"=22=4=7・0+4 <二項定理 !!! ←合同式については =7.4(C79-1+C179-2+..+°Cq-1) +4 [1] の式を利用。 ■■■ (3) ③ は整数で, 2=7×(整数)+1の k=1, 4,7, 二項定理を適用する 指数は自然数でなけれ ならないから, q=0 と g≧1 で分けて考える。 (*)は [1] の式を利用 して導いている。 k=2, 5,8, よって,2を7で割った余りは4である。 [1]~[3] から 2 を7で割った余りが4であるのは,k=3g+2のときだけである。 したがって2を7で割った余りが4であるとき, kを3で割った余りは2である 別解 合同式の利用。 A までは同じ。 8 RE

回答募集中 回答数: 0
数学 高校生

カッコ2番について、赤の下線をつけた部分がなぜそうなるのか分からないので教えて下さい!

〔3〕 スキー競技の「モーグル」 は, こぶのある斜面をスタート地点からゴール地点 まで滑り降りかかった時間によるタイム点, ジャンプ演技によるエア点。ターン の技術によるターン点の合計を競う競技である。 下の表は, 2017年に札幌で行われたある大会の上位16人の得点を表している。 タイム点Xは20点満点, エア点Yも20点満点, ターン点Zは60点満点で, 合 計得点 W は 100点満点である。 エア点とターン点は審判の採点によって決まり, タイム点は斜面を滑り降りるのにかかった時間T (秒) によって決まる。 順位 時間(秒) タイムX (点) エアY(点) ターン Z(点) 合計 W (点) 1 16.86 15.26 53.10 85.22 2 16.25 12.85 53.70 3 15.72 14.40 51.60 4 16.86 13.30 (51.20 5 16.04 15.41 49.70 6 15.69 13.47 50.00 7 15.49 13.60 50.00 8 16.14 10.79 (51.20 9 14.44 14.92 48.50 10 16.53 12.48 47.80 11 14.71 12.81 49.10 12 13.60 10.30 42.60 12.37 6.27 43.60 9.35 8.12 41.00 9.80 7.47 39.60 5.93 7.18 42.80 13 14 15 16 22.20 22.63 23.01 22.20 22.78 23.03 23.17 22.71 23.92 22.43 23.73 24.52 25.40 27.55 27.23 29.99 82.80 81.72 81.36 81.15 79.16 79.09 78.13 77.86 76.81 76.62 66.50 62.24 58.47 56.87 55.91 (数学Ⅰ・数学A 第2問は次ページに続く。)

回答募集中 回答数: 0