学年

教科

質問の種類

数学 高校生

2つの整数解α、β(α≦β)と置く理由がいまいち分かりません。とくにα≦βと置く理由です。 なので、(1)ではそのままα≦βの条件のままkを求めるのに対して、(2)ではα≦βという制限がなくていい理由もピンと来ません。教えてください🙇‍♀️

数学Ⅱ-47 練習 (1) 2次方程式x²ー(k+6)x+6=0の解がすべて整数となるような定数kの値とそのときの整 053 数解をすべて求めよ。 (2) 定数とする。 x2+px+2p=0の2つの解α, βがともに整数となるとき,組 (a, B, p)をすべて求めよ。 (1) 2つの整数解を α, B(α≦B)とする。 解と係数の関係から a+β=k+6,αβ=6 α β は整数であるから, kも整数である。 aβ=6から (a, B)=(-6, -1), (-3, -2), (2, 3), (1, 6) また,k=α+β-6であるから [(2) 類 関西大〕 2 ←重解のとき α=β(1) 練 ←a, B(a≦B) は6の約 - k=-13, 11, -1, 1 数である。 よって k=-13のとき x=-6, -1; k=-11 のとき x=-3, -2; k=1のとき x=2,3; k=1のとき x=1,6 (2) 解と係数の関係から a+β=-p, aβ=2p ...... ① ←第1式から pを消去すると αβ=2{-(a+β)} p=-(a+B) 変形して (α+2) (β+2)=4...... ② ←αβ+2(a+β)+4=4 ここで, p>0であるから, 1 より a+β < 0, aβ > 0 よって α <0.β<0 ←p>0の条件を利用。 ゆえに α+2<2,β+2 <2 α, βがともに整数のとき, α+2, β+2 も整数であるから, ② (a+2, B+2)=(-4, -1), (-2, -2), (-1, -4) よって (a, B)=(-6, -3), (-4, -4), (-3, -6) p = -(a+β) であるから, 求める (α, β, p) の組は (a, B, p)=(-6, -3, 9), (-4, -4, 8), (-3, -6, 9) (1)と同様にα≦βの仮 定をつけて進め, 後から α≦βの制限をはずす, という流れでもよい。

解決済み 回答数: 1
数学 高校生

黄色マーカーのところで、 なぜα^2が虚数だと言えるのですか? また、なぜα^3は虚数じゃないんですか? 教えてほしいです。

【4】 b を正の数としの2次方程式 bx+1=0が虚数解 α をもつとする。次 の問いに答えよ。 (1)ものとり得る値の範囲を求めよ、 (2) (3) 次の条件 (1) (II)をともに満たす 3次方程式が存在するようなもの値をすべて求め α α をそれぞれ Aα+ B (A, B はもの多項式) の形で表せ. 32 よ (I) 係数はすべて実数である。 実数に、宗教、共役な複素数 (II)α2 とαの両方を解にもつ。 (40点) x²-bx+/- 考え方 (1) 判別式の符号を考えましょう。 (2)xαが方程式f(x)=0の解であることは, f (α) =0が成り立つことと同値です. (3) as は虚数となるので、条件(1) (I)をともに満たす3次方程式が存在するとき、その3次方程式は虚数解を2個も ち、それらの虚数は互いに共役となります。”も解ですから、がと共役かどうかで場合分けをしましょかも x2-bx +1=0 【解答】 (1) ①の判別式をDとすると D=(-b)2-4.1.1=62-4=(b+2)(b-2) ax+bx+cx+d=o abc.da 無の和 2解を α + + 8 = a だったら、係数 ......① x + 3 + 8 x - 右ができ が成り立つ である実数係数の2次方程式 ① が虚数解をもつのでD0,すなわち 2<b<2であり,これと60よりものとり得る値の範囲は 0<b<2 である. ......② (答) (2) αは①の解であるから α-ba+1=0 が成り立つ. よって a²=ba-1 であり,③を用いると α = α α2 =α(ba-1) ......③ (答) a 2-えがのだったり、又は2 =bba-1)-α =(2-1)a-b 2つが消えるような数 3次代の解はPic で、答えは実数になるということは、 共役な複素数をもつ数が目にある xxbx + 1 で割ることに x3 = (x2-bx+1)(x+6) +(62-1)x-b ・・・・④ (答) となる. でくる が得られる.これにx=αを代 入してもよい. 解説 1° 実数係数の方程式 (3) αは虚数であるから, a α = α (1-α) ¥0 である. よって、α キαで あるから, (II)を満たす3次方程式の3つの解のうち2つはα αである. また,αは虚数で, 60であるから,③ より αは虚数である,よって,(I), (II)をともに満たす3次方程式は と共役な複素数(キα2)も解にもつの で、もう1つの解をすると (7) B= a²) が実数 (1) a³ = a² のいずれかが成り立つ かがの共役な複素数 バー(一) 共役な複素数という意味 (ア)のとき, α2+β=a2+αであるから,α2 +βは実数である.また, は実数であ と虚数解 X, Y を実数とし、 |α = X + Yi とすると, α = X-Yi であるから a² + a² = 2X となる. よって, α2 + α は実 数である. 解説 2°解と係数の関係 (I)と解と係数の関係よりα + α + βも実数である. よって るから,④と② より すなわち b2-1 = 0 かつ 0<b<2 (610-6 再 だから、を消したい! →6210であればOK ー ②数13- b2=1 Ocbc2より b=1

解決済み 回答数: 1
数学 高校生

この問題がよく分かりません。 何が分からないのかもわかっていないレベルなので 詳しく教えていただけるとありがたいです。 大雑把な質問で申し訳ありませんがお願いします🙇‍♀️

83 数分解できる。 もち 次式×2次式 よ」とい 解すればよい。 の 指針 与式がx、yの1次式の積の形に因数分解できるということは、 (与式)=(ax+by+c)(px+y+z) 例題 47 因数分解ができるための条件 00000 x2+3xy+2y2-3x-5y+kがxyの1次式の積に因数分解できるとき、定数k の値を求めよ。 また、 その場合に、この式を因数分解せよ。 [東京薬大] 基本46 を利用 =0 とおいて解く の公式。 狐の前の2 (0) 解答 を忘れないよう 数の範囲の因数 ら x= -3(y-1)±√9(y-1)2-4(2y2-5y+k) 2 ==3(y-1)±√y2+2y+9-4k の形に表されるということである。 恒等式の性質を利用(検討参照) してもよいが、 こ そこでは,与式を2次式とみたとき, = 0 とおいたxの2次方程式の解の1 次式でなければならないと考えて、その値を求めてみよう。 ポイントは、解がの1次式であれば、解の公式における内がりについての完 平方式(多項式)”の形の多項式] となることである。 P=x2+3xy+2y2-3x-5y+k とすると P=x2+3(y-1)x+2y2-5y+k P=0をxについての2次方程式と考えると、解の公式か x”の係数が1であるか ら,xについて整理した 方がらくである。 2 2章 解と係数の関係、解の存在範囲 e: と この1=12-(9-4k)=4k-8=0 ゆえに k=2 4 里の因数分 _-3(x-1)+√(+1) -3y+3±(y+1) (y+1)^=ly+1|であ = による。 このとき x= 2 すなわち x=-y+2, -2y+1 ないよう よってP={x-(-y+2)}{x-(-2y+1)} =(x+y-2)(x+2y-1) +x(1+28)るが、土がついているか ら,y+1の符号で分け る必要はない。 (p+4)=(0- 恒等式の性質の利用 検討 2 この2つの解をα, β と すると, 複素数の範囲で はP=(x-α)(x-β) と因数分解される。 Pがx,yの1次式の積に因数分解できるためには,この 解がyの1次式で表されなければならない。 よって,根号内の式y2+2y+9-4kは完全平方式でなけれ 完全平方式 ばならないから, y2+2y+9-4k=0 の判別式をDとする ⇔=0が重解をもつ ⇔判別式 D=0 ると, 1 いない (1)x2+xy-6y-x+7y+k x2+3xy+2y2=(x+y)(x+2y) であるから,与式が x, yの1次式の積に因数分解できると すると,(与式)=(x+y+a)(x+2y+b) ① と表される。 ...... ①は,xとyの恒等式であり, 右辺を展開して整理すると (与式)=x2+3xy+2y2+(a+b)x+(2a+b)y+abとなるから, 両辺の係数を比較して a+b=-3,2a+b=-5,ab=k これから,kの値が求められる。 い 歌の 8A 10-1-x+(8-x)(ローズ) 練習 次の2次式がx,yの1次式の積に因数分解できるように、定数kの値を定めよ。 ③ 47 また,その場合に,この式を因数分解せよ。 (8-8) (2) 2x2-xy-3y²+5x-5y+k

解決済み 回答数: 1
数学 高校生

波線部について質問です。なぜ>=なんですか?二つの解とあるので,>ではないんですか?

基本例題 52 2次方程式の解の存在範囲 ①①① 2次方程式 x2-2px+p+2=0 が次の条件を満たす解をもつように、定数の 値の範囲を定めよ。 (1)2つの解がともに1より大きい。 (2)1つの解は3より大きく、他の解は3より小さい。 /p.87 基本事項 2 89 指針 2次方程式x2-2px+p+2=0の2つの解をα,βとする。 2章 解と係数の関係、解の存在範囲 (1) 2つの解がともに1より大きい。→α-1>0 かつβ-1> 0 (2)1つの解は3より大きく、他の解は3より小さい。 →α-3と β-3が異符号 以上のように考えると, 例題 51と同じようにして解くことができる。 なお, グラフを 利用する解法 (p.87 の解説) もある。これについては、 解答副文の別解 参照。 2次方程式 x2-2px+p+2=0の2つの解をα,βとし, 判別解 2次関数 解答 別式をDとする。 4 =(− p)² - (p+2)= p²-p−2=(p+1)(p−2) 解と係数の関係から a+β=2p, aβ=p+2 (1) α>1,β>1であるための条件は D≧0 かつ (α-1)+(β-1)>0 かつ (α-1) (B-1)>0 D≧0から よって (p+1)(p-2)≥0 p≤ -1, 2≤p ...... ① (α-1)+(β-1) > 0 すなわち α+β-20 から 2p-2>0 よって>1 ...... 2 (α-1) (B-1)>0 すなわち αβ-(a+β) +1 >0から で p+2-2p+1>0 よって <3 ③ 求めるかの値の範囲は,①,②, ③の共通範囲をとって f(x)=x2-2px+p+2 のグラフを利用する。 (1) 12/27=(p+1) (p-20 軸について x=p>1, f(1)=3-p>0 から 2≦p<3 YA 3-1 x=py=f(x) + α P B x 0 1 2 -①- (2)(3)11-5p<0から 123 P p>. 11 5 <題意から α =βはあり えない。 2≦b<3 (2) α <β とすると, α<3 <βであるための条件は (α-3) (B-3) < 0 すなわち αβ-3 (a+β)+9<0 ゆえに p+2-3・2p+9 < 0 よって p> 5 練習 2次方程式 x 2-2(α-4)x+2a=0が次の条件を満たす解をもつように定数αの値 52 の範囲を定めよ。 (1) 2つの解がともに2より大きい。 (2)2つの解がともに2より小さい。 (3)1つの解が4より大きく, 他の解は4より小さい。 p.91 EX 34

解決済み 回答数: 1