学年

教科

質問の種類

数学 高校生

2番の問題ですがなぜOHベクトルがマーカーのようになるのでしょうか? 因みに私はOHベクトル=cosΘにしました。

12 で表 がある. 円C上 利用して,円Cの ことを利用する。 とよい. を4で割る. "=r の形に変形 P(p) B (6) E√5 考え方 解 円の接線 線分の垂直二等分線のベクトル方程式 ** (1) 中心C(c), 半径の円C上の点P() におけるの トル方程式は (-)=²(x>0) であることを示せ。 (2) OA=4,OB=6,4|=||=1,4=kのとき,線分 OA の垂直 二等分線のベクトル方程式を媒介変数tとa, , kを用いて表せ。 ただし, 点Bは直線OA 上にないものとする。 (1) ℃の接線は、 接点Pを通る半径 CP に垂直である.このことを, ベクトル の内積を用いて表す。 (2) B から OA への垂線を BH とする.線分 OA の中点 M (1/2d) を通り, BHに平 行な直線のベクトル方程式を求める. (1) 接線上の任意の点をP(D) とすると, CPPP または PP = 1 であるから, CP-P.P=0 CP=po-c, PPD-po より, Po(po) (Po-c) (p-po)=0 (Po-c) {(p-c)-po-c)}=0 (Po-c) (p-c)-po-c²=0 |po-cl=CP=r であるから, ( (②2) 垂直二等分線上の点Pについて, M (12) OP= とする.また, B から OA HX への垂線をBH とし, ∠AOB=0 とすると, |a|=1, ||=1 より, k=d6=1×1×cos0=cos0 A(a) P(p) C(c) -2)・(おご)=²円の半径 0 ←なぜこうなるの? P(p) B(b) OH = (cose)a=kd これより, BH = OH-OB=ka-b 垂直二等分線は,線分 OA の中点M (124)を通り, BFに平行な直線であるから、五=1/2a+t(hd-6) PP のとき. CPoPoP P=Po のとき, P.P=0 OH = OB cose =1・cos0=cose BH は、 垂直二等分線 の方向ベクトル 平面上のベクトル =(1,-3) 2つのベクトルのなす角 cos d=立 (2,1). (173) √5 +√10 0≦x≦180°より 2直線のなす角 0=45° 44 191355 (1) 14P-30-21= | 45²³² - (30²³+R) | = 30+1 ことな 点Cは線分AB あり、IP-2 点Pと点くの よって点は線 する点を

回答募集中 回答数: 0
数学 高校生

ベクトル苦手です( i _ i ) 教えていただきたいです お願いします (2)の問題についてです ベクトルOH=cosθベクトルaと書かれていますが ベクトルOH=cosθベクトルbでも良いですか?

例題 365円の接線, 線分の垂直二等分線のベクトル方程式 X (1) 中心C(c), 半径rの円C上の点P(po) における円の接線のベクト ル方程式は (Do-c) (p-c)=²(x>0) であることを示せ . OA=a, OB=b.la|=|6|=1,a6=kのとき,線分 OA の垂直二 • 考え方 (1) 円の接線 ℓは、 接点Pを通る半径 CP に垂直である。このことを、ベクトル 内積を用いて表す。 解答 等分線のベクトル方程式を媒介変数tとa, b, k を用いて表せ. ただし,点Bは直線OA 上にないものとする。 8A RM09A (2) BからOA への垂線をBH とする.線分OAの中点 M (12) を通り、BHに Ishallall な直線のベクトル方程式を求める. (1) 接線上の任意の点をP(D) とすると, CPLPP または PP=0 楠羽 であるから, CP・PP=0 SANGRA Po(po) への垂線をBH とし, ∠AOB=0 とすると, |a|=1,|5|=1 より, (1199) kag=1x1 xcos0= cos0A(a) OH=(cos 0)a= ka CP=po-c. PaP=カーより。 Po-c) p-po-0 (Po-c) {(p-c)-(Bo=C)}=0 Do-c) (p-c)-po-c-0 |po-c|=CP=r であるから, (DC)(C)=2円の半径 (2) 垂直二等分線上の点Pについて, 0 M(¹a) OP= D とする.また, B から OA これより, H P(p) C(C) 0 xox+yoy=x2 BH-OH-OB=ka-b WWWW 垂直二等分線は,線分 OA の中点M (1/24)を通り, BHに平行な直線であるから、五=1/24(-6) P(p) Dop=re pop = xox+yoy B(b) P≠P のとき、 CPLPP のとき、 注 中心が原点O(0), 半径rの円上の点P(po) における接線のベクトル方程式は、 いて c=0とおいて得られるから, Do= (xo,yo), = (x,y) とおくと, したがって,接線の方程式は, PP=0 BFは,垂直二等分 の方向ベクトル となる

解決済み 回答数: 1