学年

教科

質問の種類

数学 高校生

xの範囲を書かないといけないですよね? また、どこか記述に問題あったりしますか?

KA から 基本例題84 2次関数の最大・最小と文章題 (1) 「長さ6mの金網を直角に折り曲げて、 右図のように,直角 な壁の隅のところに長方形の囲いを作ることにした。囲い の面積を最大にするには,金網をどのように折り曲げれば よいか。 基本77 適当な文字 (x) を選び, 最大 最小を求めたい量を(x) 式に表す ことが出発点。 この問題では,端から折り曲げた長さをxmとして,面積Sをxで表す。 次に, S(xの2次式) を基本形に直し,xの変域に注意しながらSを最大とするxの値 を求める。 指針 文章題 CHART 文章題 題意を式に表す 解答 金網の端からxmのところで折り曲げ るとすると, 折り目からもう一方の端 までは (6-x)m になる。 x>0かつ6-x>0 であるから 0<x< 6 ① 金網の囲む面積をSm² とすると, ...... 3) 1 S=x(6-x) で表される。 S=-x2+6x=-(x2-6x) =-(x2-6x+3)+32 =-(x-3)2+9 ①の範囲において, Sはx=3のとき 最大値9をとる。 よって、端から3m のところ、 すなわ ち,金網をちょうど半分に折り曲げれ ばよい。 表しやすいように変数を選ぶ 変域に注意 008 STUE 3439--- 最大 1 10 3 61 DOS- 練習 長さ 6 の線分AB上に 2点 C D を AC=BD ② 84 となるようにとる。 ただし, 0 <AC <3 とする。 線分 AC, CD, DB をそれぞれ直径とする3つ の円の面積の和Sの最小値と, そのときの線分 ACの長さを求めよ。 p. 146 EX63 XE 自分で定めた文字 (変数) が 何であるかを、きちんと書 いておく。 A 辺の長さが正であることか ら,xの変域を求める。 基本形に直して, グラフを かく。 Gor グラフは上に凸, 軸は直 x=3, 頂点は点 (39) 面積が最大となる囲いの形 は正方形。 C 20 B D. 137 3章 10 2次関数の最大・最小と決定

回答募集中 回答数: 0
数学 高校生

⑵の問題についてです 参考書の解答が分からなかったので自分なりに解いてみましたが、解答はこれでも合ってますか? 何も文章とか書いてないので、付け足した方がいいところなどがあったら教えて下さい よろしくお願いします

Condu VAGOAT-/ 114 重要 例題 68 定義域によって式が異なる関数 (2) 関数f(x) (0≦x≦4) を右のように定義すると き,次の関数のグラフをかけ。 (1) y=f(x) (2) y=f(f(x)) 解答 (1) グラフは 図 (1)。 (2f(x) (0≤ f(x) <2) (2) f(f(x))= [8-2f(x) (2≦f(x)≦4) X001 指針>定義域によって式が変わる関数では,変わる境目のx,yの値に着目。 (2) f(f(x)) f(x)のxにf(x) を代入した式で, 0≦f(x)<2のとき 2f(x), (1) のグラフにおいて, f(x)<2となるxの範囲と, 2≦f(x) 4 となるxの範囲を見 極めて場合分けをする。 よって, (1) のグラフから 0≦x<1のとき f(f(x))=2f(x)=2.2x=4x 1 1 T 1 1≦x<2のとき f(f(x))=8-2f(x)=8-2・2x=8-4x 2≦x≦3のとき f(f(x))=8-2f(x)=8-2(8-2x)=4x-8 3<x≦4のとき f(f(x))=2f(x)=2(8-2x)=16-4x よって, グラフは図 ( 2 ) 。 (1) O 1 2 3 4 x (2) 4 f(x)={ 2≦f(x)≦4のとき 8-2f(x) 0 1234 x [参考] (2)のグラフは,式の意味を考える方法でかくこともできる。 [1] f(x) が2未満なら2倍する。 E 18-2x (2≦x [2] f(x) が2以上 4以下なら, 8から2倍を引く。 [右図で、黒の太線・細線部分がy=f(x), 赤の実線部分が y=f(f(x)) のグラフである。] なお, f(f(x)) f(x) f(x) の 合成関数といい, (fof) (x) と書く (詳しくは数学ⅢIで学ぶ)。 0000 ■変域ごとにグラフをかく。 (1) のグラフから, f(x)の 変域は YA 2 0 0≦x<1のとき 0≤ f(x) <2 1≦x≦3のとき 2≤ f(x) ≤4 3<x≦4のとき 0≦f(x)<2 また,1≦x≦3のとき f(x) の式は 1≦x<2なら f(x)=2x 2≦x≦3ならf(x)=8-2x のように,2を境にして式 が異なるため, (2) は左の解 答のような合計4通りの場 合分けが必要になってくる。 9 2 2倍する 8から2倍を 引く 2

回答募集中 回答数: 0