学年

教科

質問の種類

数学 高校生

(2) 最後λp🟰1/3VT✖️2 となっていますがこの2はなんですか? λqの✖️4もわからないです。

341 音源の移動と波面 「考え方 (1) 各点で発せられた音波の波面は,各点を中心に広がる。 (2) (1) でかいた波面の間隔が波長に等しいことから, 点P, Q で観測される音の波長を求める。 (1) 点A, B, Cで発した音 波の波面はそれぞれの点を 中心に広がる。 音の速さは 音源の速さの3倍だから, 音源が方眼の1目盛り進む 1Q 間に,音波は3目盛り進む。 よって, 点A,B,Cで発 した音波の半径はそれぞ れ 目盛り 6目盛り 3 目盛りである。 以上から, 現在の波面は右上の図のようになる。 (2) 右上の図の波面は1周期ごとに発せられたものだから,波面の間隔 24=\VTx1 VT ・VT ×4= 3 ............ 542 .........! ABCD 小 点Aからの波面 i 点Bから の波面 点Cから の波面 Ab は波長に等しい。1目盛りの長さは1/13 VT だから,点P, Q で観測 される音の波長入p, AQは, 道のり =VT×2=VT 一速さ×時間 V = F x= v f 3 ve タニテ 答 上の図 2 答 点P.... VT, QVT 3 19 (2) 補足 一般に さを us, 音源が発す の振動数をfとする 音源の前方で観測され 音の波長 X' は, V-Us f X'== と表される。 (上の式でus を 置き換えると、音 方で観測される音の になる) 音波の波面 広がるよう

解決済み 回答数: 1
数学 高校生

46番の無限級数の問題です。なぜこれは2nと2n-1に分けるのでしょうか?

I am. 2b が収束 an "=1 =1 = Σan+ [bn n=1 n=1 00 =Σan-Σbn n=1 7 8 a n=1 81 n 46. 第n項をa=(-1)"-1 n+1 lima2n-1=lim (-1)2n-22n-1 1118 1 1-(-- 21/12) 2 limazn=lim(-1)2n-1. 818 であり、 よって, N 818 n 2 1 √2n 1 2n + この無限級数は発散する。 1 √2n -Xn + + ·+.... + 11-0 + 2n 2n+1 は振動し, 0 に収束しない。 数列{an} n ここで,lim V2 したがって, limT"=∞ よって, 無限級数 n=1 47. 部分和として,初項から第n項までの和T” を考える。 1 1 1 Tm= √2 √√4 √6 √2n 2n 1 =8 とすると □(1) 2"-2" 5n 1 2n 3 3 1 n=1 √ 2n =lim ・+・・・ =lim →:00 →:00 4 5 45 次の無限級数の和を求めよ。 2 n 2 2+ 1 + √2n +.... は発散する。 (2) 0の半径をとするとき コ (3) すべての円の面積の総和を求めよ。 によってかわる大12 =1 1 n ADD □/46 次の無限級数は発散することを示せ。 1 2 3 + ・+(-1)"-1_ 2 3 4 =-1 + ......+ □(2) Σ- n=1 1+(-1)" n n+1 を を用いて表せ。 数列{an}が0に収束しない an は発散する ·+... が成り立つ 1≦k≦nのとき, 1 1 √2k √2n 1 2n がn個 ⓒSn≦T" (n=1, 2, 3, …....) のとき, limS=∞ ならば, limT"= 818 を利用する。 ・教p.25 応用例題12 ・教p.26 例題 13 p.27 例 10 352 → 十・・・・・・ の収束 発散を調べよ。 353

未解決 回答数: 1
数学 高校生

なぜ、丸で囲ったようになるのですか?また、計算の仕方も教えてくれると嬉しいです!教えてください。 お願いします!

つたろ. の代 てま き 28 2 ・自然長・ 橋元流で 解く! * m 第9講 単振動 図9-29 粗くて水平な床面上に, ばね定数kのばねが,一端を壁に固定して 長からaだけ引き伸ばして、静かに手をはなしたところ、 小物体はば 置かれている。 ばねの他端に質量mの小物体をつなぎ, ばねを自然 ねに引かれて床面上をすべり ある地点で一瞬静止したのち、再び逆 向きに動きはじめた。 はじめから一瞬静止するまでの間に小物体が動いた距離はいくらか。 また,その間に要した時間はいくらか。 ただし,重力加速度の大きさをg 小物体と床面との間の動摩擦係 数をμとする。 201 準備 この問題では,小物体に床からの動摩擦力が働きま すから,力学的エネルギー保存則は使えないはずです。にもか かわらず, 小物体が動きはじめてから次に静止するまでの間に 起こることは,摩擦のないふつうの単振動と同じなのです。 なぜそのようなことが起こるのかといえば、この小物体に働く床面から の動摩擦力の大きさは,床からの垂直抗力をNとして f = μN = μmg で一定だからです。 たとえば,μ = 1だとすると, この摩擦力は重力mg と同じ大きさですから、重力のもとでの鉛直方向の単振動とまったく同じ になります。 不思議なように見えますが、謎の種を明かせば、一瞬静止した小物体が 向きを変えて動きはじめたとき 小物体に働く動摩擦力は大きさこそμmg で同じですが、その向きは逆向き(左向き)になります。ですから、最初 の単振動とは別の単振動に変わっているわけです(振動の中心が移動しま

解決済み 回答数: 1