学年

教科

質問の種類

数学 高校生

193.3 この記述でも問題ないですよね??

304 00000 基本例題 193 導関数と微分係数 (1) 関数f(x)=2x+3x2-8x について, x=-2における微分係数を求めよ。 (2) 2次関数f(x) が次の条件を満たすとき, f(x) を求めよ。 A (1)=-3. f' (1)=-1, f'(0)=3 (3) 2次関数f(x)=x2+ax+bが2f(x)=(x+1)f'(x)+6を満たすとき,定数の b の値を求めよ。 基本191) Webs 指針▷ (1) x=q における微分係数 f'(a) は,導関数 f'(x) を求めて, それに x = a を代入する。 簡単に求められる。 f(x)は2次関数であるから, f(x)=ax²+bx+cとする。アーム ②2 導関数 f'(x) を求め, 条件をa, b, c で表す。(笑) ③3 a,b,c の連立方程式を解く。 (3) 導関数 f'(x) を求め,条件の等式に代入する。一(d+xp(s+xmi= →xについての恒等式であることから, α, 6の値が求められる。 (2) 解答 (1) f'(x)=2.3x2+3・2x-8・1=6x²+6x-8 したがって f'(-2)=6・(-2)^+6・(-2)-8 =4 J3 (0+20) (2) f(x)=ax2+bx+c (a≠0) とすると (1) f'(x)=2ax+b() a+b+c=-3 2a+b=-1 f(1)=-3 から f' (1)=-1から f'(0)=3 から これを解いて したがって (3) f(x)=x2+ax+bから 与えられた等式に代入すると b=3 a=-2,6=3, c=-4 f(x)=-2x2+33-4 f'(x)=2x+α 1-2x3. = (d+xb) = ( 2(x2+ax+b)=(x+1)(2x+α)+6 整理して 2x2+2ax+26=2x2+(a+2)x+a+6 これがxについての恒等式であるから、両辺の係数を比較 すると 2a=a+2, 2b=a+6 これを解いて a=2, b=4 ^²(6+x)) = (+2) -3r²-12r+5@r=1 / tu TUALET 微分係数 f'(a) の求め方 [1] 定義 (p.296 [①])に従って 求める [2] 導関数 f'(x) を求めて、 x=a を代入する。 の2通りがある。 例題 1931) では [2] の方法の方が早い。 なお、定義に従うなら f(-2+h)-f(-2) h f'(-2)=lim または f'(-2)=lim として計算。 ho x-2 f(x) f(-2) x-(-2) 係数比較法。 1

回答募集中 回答数: 0
数学 高校生

175.2.3 答えを導くまでの記述に問題はないですよね?

したもの 点のx座 すると、 5 x=-1 gcb gea loga.M+I x=1 から ニ t 基本例題 175 対数の大小比較 | 次の各組の数の大小を不等号を用いて表せ。 (1) 1.5, 10g35 点のx座標 ALUMIST 指針 対数の大小比較では, 次の対数関数の性質を利用する。 a>1©¢\0<p<q⇒loga p<loga q 大小一致 0<a<1のとき 0<p<glogp>logag 大小反対 (不等号の向きが変わる ) まず異なる底はそろえることから始める。 (1) 小数 1.5 を分数に直し, 底を3とする対数で表す。 (2) 210g49を底を2とする対数で表す。 係をいた 【CHART 対数の大小 底をそろえて 真数を比較 解答 (2) 2, log49, log25 (3) logo.53, logo.52, log32, log52 p.273 基本事項 ② 貸付 (3) (3) 4数を正の数と負の数に分けてから比較する。 また, 10g32, 10g52の比較では, 真数がともに2であるから, 底を2にそろえると考えやすい。 (1) 1.5=2=log:3=log:31 ** (31)²-3¹-27>5² また 底3は1より大きく35であるから log332>log3 5 したがって 1.5 >log35 (2) 22102210g222=10g24, log49= 底2は1より大きく, 3 <4<5であるから log23 <1024 <1025 すなわち 10g9<2<log25 0.5は1より小さく, 3>2>1 であるから logo.53 <logo.52 < 0 log52= 1 log32= log23 1 <3 < 5 であるから よって すなわち したがって 0 log25 log23² 10222 -=10g23 0<log23<log25 1 1 log25 10g23 練習 2175 (1) 10g23, 10g25 logaq 1 logapty 0 0<log52<log32 logo.53<logo.52 <logs 2 <log:2 で, 底2は1より大きく, S YA a>1 次の各組の数の大小を不等号を用いて表せ。 (2) 10go.33, 10go.35 p 00000 y=logaxのグラフ gx y 0<a<1 10gap OP logag Syz 底はそろえよ <A> 0, B>0ならば A>B⇒A²>B² 底の変換公式。 9 不等号の向きが変わる。 <指針のy=logaxのグラフ から, α>1のとき 0<x<1⇔logax < 0 x>1⇔10gax>0 0<a<1のとき 0<x<1⇔10gax>0 x>1⇔logax < 0 p.293 EX113 (3) logo.54, log24, log34 x 275 5章 31 対数関数

回答募集中 回答数: 0
数学 高校生

68. 記述でこの問題を解く場合について質問です。 解答のように表を書くのが個人的にピンとこない (実際試験でこの問題を解くときに表を書こうとは思わない)のですが、私が考えたような(写真2枚目)原始的に数直線で考える解法の場合、どのような記述文にすればいいでしょうか??

108 重要 例題 68 高次不等式の解法 次の不等式を解け。 ただし, aは正の定数とする。 x3-(a+1)x²+(a−2)x+2a≦0 指針▷まず,不等式の左辺を因数分解する。 因数定理を利用してもよいが,この問題では、 次の文字αについて整理する方が早い。 (x-a)(x-B)(x-x)≧0の形に変形したら、後は各因数 x-α, x-β, x-yの符号を調べ て, (x-a)(x-β) (x-y) の符号を判定する。 なお,α, B, y に文字が含まれるときは,α, β, y の大小関係に注意する。 解答 不等式の左辺をα について整理すると (x-x2-2x)(x-x-2a≦0 x(x+1)(x-2)-(x+1)(x-2)a≦0 (x+1)(x-2)(x-a) ≤0 よって [1] 0<a<2のとき 右の表から, 解は x-1, a≦x≦2 [2] a=2のとき 不等式は (x+1)(x-2)2 ≤0 となり (x-2)2≧0であるから x-2=0 または x+1≧0 ゆえに, 解は x≦-1, x=2 [3] 2<αのとき 右の表から, 解は x≤-1, 2≤x≤a [1] ~ [3] から, 求める解は 0<a<2のとき x≦-1, a≦x≦2 a=2のとき x≦-1, x=2 2 <a のとき x≦-1, 2≦x≦a x x+1 x-a x-2 f(x) [1] f(x)=(x+1)(x-2)(x-a) -1 a 0 + + x x+1 x-2 - x-a f(x) - - *** - ◄x²-x²-2x - =x(x-x-2) =x(x+1)(x-2) - - 0 ... - 0 - - + -1 0 + [3] f(x)=(x+1)(x-2)(x-α) 0000 ... - - + 00 - 0 2 + 0 ... +|+|||| + + ++ - *** + + 2++00 1 0 0 I 0 + a + ++ + + +1:

回答募集中 回答数: 0
数学 高校生

186. このような記述でも問題ないですよね? またこの類の問題ではほとんどの場合互いに素を用いるように思うので、互いに素を使いたい、そして有理数の性質(m/nでm,nは整数でn≠0)よりこのような証明方法になるということですよね? また、有理数であることを仮定してから、「... 続きを読む

演習 例題186 指数方程式の有理数解 (1) 3*=5 を満たす xは無理数であることを示せ。 (②2) 35-2y=53-6 を満たす有理数x,yを求めよ。 m (m,nは整数,n≠0) と表される数を有理数といい, 有理数でない n 指針 実数において, ものを無理数 という。 (1) 無理数であることの証明では, 有理数であると仮定して, 矛盾を導く (背理法)。 (2) 方程式1つに変数がx,yの2つ。 有理数という条件で解くから, (1) が利用できそう。 底が3,5であるから, 3' =5 [(1)] の形にはならないことを用いる。 解答 (1) 3=5を満たすxはただ1つ存在する。 そのxが有理数であると仮定すると, 3*=5>1 であるから m CHART 無理数であることの証明 (有理数) とおいて、 (1) n 背理法 事柄が成り立たないと仮定し て矛盾を導き, それによって m x>0で,x=- (m,n は正の整数)と表される。 =(a+事柄が成り立つとする証明法 (数学Ⅰ)。 n m 37=5 よって 両辺をn乗すると 3m=5n ① ここで,①の左辺は3の倍数であり,右辺は3の倍数ではな いから,矛盾。 よって, xは有理数ではないから、無理数である。… 3x-y+6=5x+2y (2)等式から 2) spol x+2y=0 と仮定すると, ② から x-y+6 3x+2y = 5 練習 ③ 186 x,yを有理数とすると, x-y+6, x+2y はともに有理数で x-y+6 x+2y ...... ゆえに このとき, ② から よって x-y+6=0 ④,⑤を連立して解くと も有理数となり, (1) により③は成り立たない Gram x+2y=0 000 3x-y+6=1 基本 167 x=-4, y=2 等式 20x10y+1 を満たす有理数x,yを求めよ。 3と5は1以外の公約数を もたない。 このとき,3と 5は互いに素 という。 3÷36=5÷5-2y 3x-(y-6)=5x-(-2y) ②から3-y+6)x+2y X = (5x+2y)x+2y (1) で3'=5を満たすは 無理数であることを証明し ている。 KH ④: x+2y=0 と仮定して, 矛盾が生じたから, x+2y=0 である。」< 40 T810 Op.294 EX120 53

回答募集中 回答数: 0
数学 高校生

184. 2つ質問があります。 ①<と書いて間違えたのですが、半分以下は≦(半分も含む)と覚えておけと言うことですか?余談ですが、5以下だと5も該当するということですよね?? ② ①以外で記述で問題がある箇所はありますか??

基本例題184 対数の文章題への利用 28000① A町の人口は近年減少傾向にある。 現在のこの町の人口は前年同時期の人口と 比べて4%減少したという。毎年この比率と同じ比率で減少すると仮定した場合, 初めて人口が現在の半分以下になるのは何年後か。答えは整数で求めよ。ただし, |log102= 0.3010, 10g10 3 = 0.4771 とする。 [立教大] J 指針 文章題を解くときは, 次の①~④の要領で行う。 ① 文字の選定 ② 不等式を作る 2年後の人口は 0.96ax (1-0.04)=(0.96)² a 以後、 同じように考えて, n年後の人口は ③ 不等式を解く ここでは,両辺の常用対数をとる。 ④解を検討する ・・・・・・ n は自然数であることに注意。 LUASE en log10 197 ここで VOAST 現在の人口をαとし, n年後に人口が半分以下になるとする。 1年後の人口は a(1-0.04)=0.96a 練習 184 解答 現在の人口をaとして, n年後に人口が現在の半分以下になる 現在の人口を1としてもよ とすると い。 200 ! 両辺の常用対数をとると 96 100 ...... (0.96) as 1/24 すなわち (1000)=1/2 96 n 20 1 25.3 "De 01 102 logio 2 n≧ 96 log101 =10g10 100 = 5log10 2+log103-218.0-ITTA.0 +01|S, U- =log1025+10g10 3-10g 10 102 Equ =5x0.3010+0.4771-2=-0.0179 よって、①から -0.0179m≦- 0.3010 ゆえに 0.3010 =16.8...... 0.0179 したがって、初めて人口が現在の半分以下になるのは 17 年後 10g10- 01/13=10g102-'=-log102=-0.3010 (0.96)" a 基本183 100 <10>1 であるから,不等 号の向きは変わらない。 「初めて・・・」 とあるから, n≧ 16.8….. を満たす最小の自 然数を求める。 光があるガラス板1枚を通過するごとに,その光の強さが だけ失われるもの とする。当てた光の強さを1とし、この光がn枚重ねたガラス板を通過してきた ときの強さをxとする。 (1)xをnで表せ。 (2)の値が当てた光の 281 より小さくなるとき、最小の整数nの値を求めよ。 [北海道+) 287 5 3 E 用 対 数

回答募集中 回答数: 0
数学 高校生

182.2 k≦log10 N<k+1なので「ゆえに...」の部分を丁寧に書くと、 38.905≦log10 6^50<39より、38<log10 6^50<39であり、38.905≦log10 6^50<39の部分を解答では省略しているのですか? (38.905≦log1... 続きを読む

N<k logN<- 示し る。 基本例題 182 常用対数を利用した桁数, 小数首位の判断 ①①①①① logio2=0.3010, log103=0.4771 とする。 (1) 10g105, 10g100.006, logio√/72 の値をそれぞれ求めよ。 (2) 650 は何桁の整数か。 る。 1 / 2 \100 3 (3) HHOTTOMNE 指針 (1) 10 で, 10g10 2, 10g103 の値が与えられているから,各対数の真数を2,3, 10の累 乗の積で表してみる。 なお, 10g105の5は5=10÷2 と考える。 (2),(3) まず, 10g106% 10g10 を求める。 別解 あり 解答編p.181 検討 参照。 解答 を小数で表すと, 小数第何位に初めて0でない数字が現れるか。 scusa 01 p. 284, 2 「正の数Nの整数部分が桁⇔k-1≦loguN <k 正の数Nは小数第位に初めて0でない数字が現れる⇔-k≦1010N 【CHART 桁数,小数首位の問題 常用対数をとる 10 log. (1) 10g105=10g10=10g1010-logio2=1-0.3010=0.6990 logad = 10g100.006=10gio (2・3・10-3)=10g102+ 10g103-310g1010 = 0.3010+0.4771-3=-2.2219 ******** ゆえに logiu√72=10g10(23.32) 11 (310g102+210g103) 2 TOOTH ( 3×0.3010+2×0.4771) = 0.9286 (2)10g106505010g106=5010g10 (2・3)=50(10g102+10g103) 練習 ② 182 2\100 3 =50(0.3010+0.4771)=38.905 ゆえに 38 <10g10650 <39 よって 1038 <650 <1039 したがって, 650 は 39 桁の整数である。 (3) logi()100- =100(10g102-10g103)=100(0.3010-0.4771) 3 =-17.61 -18 <10g10 10-18< 100 2 <-17 <-k+1 3388520T AT 383 ROKS <10-17 10g1010=1 [重要] 10g15=1-10g102 この変形はよく用いられる。 1√Ã= A ² 53.0 ならば, Nの整数部分は (k+1) 桁。 100 2 よって *< ( 1 ) ¹⁰° < ゆえに,小数第18位 に初めて 0 でない数字が現れる。100mgor (2) 10MN <10%+1 (3) 10 N10-k+1 ならば, Nは小数第位 に初めて0でない数字が現 れる 881 logı2=0.3010, logw3=0.4771とする。 15' は桁の整数であり, ( 2 3 ) 100 は小数第1 1位に初めて0でない数字が現れる。 p.294 EX118 章2 5章 32 常用対数

回答募集中 回答数: 0
数学 高校生

244. この問題において、Dを求めることって必要ですか? 実際この問題はDを求めずとも答えに辿り着けるし、 他の教材等で同様の問題の解答を見たときDについて調べていなかったのですが、必要なのでしょうか??

372 基本例題 244 面積の最大最小 (1) 点 (1, 2) を通る直線と放物線y=x² で囲まれる図形の面積をSとする。 S AA ARŠNODUR 小値を求めよ。 指針 点 (1,2) を通る直線の方程式は,その傾きを m とすると,y=m(x-1)+2と表され まず, この直線と放物線が異なる2点で交わるとき, 交点のx座標α, BでSを表す。 このとき, 公式f(x-a)(x-3)dx=-12 (B-α) が利用できる。 更に,S を m の関数で表し,mの2次関数の最小値の問題に帰着させる。 解答 点 (1, 2) を通る傾きmの直線の方程式は y=m(x-1)+2 ...... ① と表される。 直線 ① と放物線y=x2 の共有点のx座標は, 方程式 x2=m(x-1)+2 すなわち x2-mx+m-2=0 の実数解である。 この2次方程式の判別式をDとすると D=(-m)²-4(m-2)=m²-4m+8=(m-2)2+4 常に D>0 であるから, 直線 ① と放物線y=x2 は常に異なる 2点で交わる。 その2つの交点のx座標をα, β(α<β) とすると s=${m(x-1)+2-x*}dx=- = -√²₂(x²-₁ T 2-mx+m-2)dx =-f(x-a)(x-B)dx=1/12(B-α) また B-α= m+√√D m-√√√D -=√D=√(m-2)² +4 2 2 したがって, 正の数β-α は, m=2のとき最小で,このとき (B-α)も最小であり,Sの最小値は 1/12 (14)-1/30 adst 7-8-9 adot x2-mx+m-2=0の2つの解をα, β とすると よって ゆえに (B-a)²=(a+β)²-4aβ=m²-4(m-2)=(m−2)²+4 3₁ 点 (1,2)を通りに な直線と放物線y=x^ まれる図形はない。 よって x軸に垂直な直線は考えな てよい。 X=- 検討 β-αに解と係数の関係を利用 S=1/12 (B-4)において, (B-α)の計算は 解と係数の関係を使ってもよい。 a+β=m,aβ=m-2 (1,2) α, βは2次方程式 x²-mx+m-2-00 TS, mt√m²-4m+! 2 S=— (B—a)³= ¹ {(B—a)³²}* = = = {(m−2)² + 4) ³ ≥ — • 4³-4 6 m²-4m+8=D XD-M300 TIROMA

回答募集中 回答数: 0
数学 高校生

242.2 厳密には RC:AC=1:√3、∠ACR=90°より∠ORA=π/3... ということですよね?? また、記述はこれでも問題をないですか?(写真2枚目)

370 00000 基本例題 242 放物線と円が囲む面積 放物線L:y=xと点尺(0.2/24) を中心とする円Cが異なる2点で接するとき (1) 2つの接点の座標を求めよ。 CASATREON (2) 2つの接点を両端とする円Cの短い方の弧とLとで囲まれる図形の面積S [類 西南学院大]基本 237 を求めよ。 指針▷ (1) 円と放物線が接する条件をp.156 重要例題102 では 接点重解で考えたが, ここでは微分法を利用して,次のように考えてみよう。 LとCが 点Pで接する点Pで接線l を共有するRPl (2)円が関係してくる図形の面積を求める問題では,扇形の面積を利用することを考え するとるとよい。 半径が,中心角が0(ラジアン)の扇形の面積は 12/20 b÷d 解答 (1)y=x2 から y'=2x LとCの接点Pのx座標をt (t=0) とし, この点での共通 の接線をl とすると, lの傾きは 2t √3 2 5 1²- 点と点P(t, t2) を通る直線の傾きは 4t2-5_ RP⊥l から 2t - -=-1 ゆえに t= 4t PROTECC = 4 4t²-5 4t t-0 よって t=± (2) 右図のように, 接点A,Bと点Cを定めると, RC:AC=1:√3 から ∠ORA=- =, RA=2.( Lと直線AB で囲まれた部分の面積をSとすると S=S+ △RBA- (扇形 RBA) ーπー ・12. /3 --√²/(x+√3)(x-√3) dx + √3-5 ゆえに、接点の座標は (2) (-4) y Ly=x) / 3 4 2 =1 π =-(-1) { ¹3³-(-√3)² + √¹3³__3√3_7B_S 4 3 O y B R fp 0 0 A

回答募集中 回答数: 0