数学
高校生

184.
2つ質問があります。
①<と書いて間違えたのですが、半分以下は≦(半分も含む)と覚えておけと言うことですか?余談ですが、5以下だと5も該当するということですよね??
② ①以外で記述で問題がある箇所はありますか??

基本例題184 対数の文章題への利用 28000① A町の人口は近年減少傾向にある。 現在のこの町の人口は前年同時期の人口と 比べて4%減少したという。毎年この比率と同じ比率で減少すると仮定した場合, 初めて人口が現在の半分以下になるのは何年後か。答えは整数で求めよ。ただし, |log102= 0.3010, 10g10 3 = 0.4771 とする。 [立教大] J 指針 文章題を解くときは, 次の①~④の要領で行う。 ① 文字の選定 ② 不等式を作る 2年後の人口は 0.96ax (1-0.04)=(0.96)² a 以後、 同じように考えて, n年後の人口は ③ 不等式を解く ここでは,両辺の常用対数をとる。 ④解を検討する ・・・・・・ n は自然数であることに注意。 LUASE en log10 197 ここで VOAST 現在の人口をαとし, n年後に人口が半分以下になるとする。 1年後の人口は a(1-0.04)=0.96a 練習 184 解答 現在の人口をaとして, n年後に人口が現在の半分以下になる 現在の人口を1としてもよ とすると い。 200 ! 両辺の常用対数をとると 96 100 ...... (0.96) as 1/24 すなわち (1000)=1/2 96 n 20 1 25.3 "De 01 102 logio 2 n≧ 96 log101 =10g10 100 = 5log10 2+log103-218.0-ITTA.0 +01|S, U- =log1025+10g10 3-10g 10 102 Equ =5x0.3010+0.4771-2=-0.0179 よって、①から -0.0179m≦- 0.3010 ゆえに 0.3010 =16.8...... 0.0179 したがって、初めて人口が現在の半分以下になるのは 17 年後 10g10- 01/13=10g102-'=-log102=-0.3010 (0.96)" a 基本183 100 <10>1 であるから,不等 号の向きは変わらない。 「初めて・・・」 とあるから, n≧ 16.8….. を満たす最小の自 然数を求める。 光があるガラス板1枚を通過するごとに,その光の強さが だけ失われるもの とする。当てた光の強さを1とし、この光がn枚重ねたガラス板を通過してきた ときの強さをxとする。 (1)xをnで表せ。 (2)の値が当てた光の 281 より小さくなるとき、最小の整数nの値を求めよ。 [北海道+) 287 5 3 E 用 対 数
2五目 例題184 96 in (100 / < を満たすんの最大値を求める。 2 各辺の常用対数をとると、 n logio 900 < logro d 96 まだ n logio co 100 = = n (logro 96-102 10 (00) = n(5/0202 -1 [5/201 + lin) — 1/10 10/ lagro 5 - 2/0/10 = n (5.0 30 10 +0.477 | - 2/ -0.017in 10210=2 = 102 101 - 102102 2 0 0.5 10 - = -0.5 10 つま -0.017¶n <0.510 0.017 in 70.310 n = 16. f 8.2 Formation=17 Fl. XP as h₂p a Fro1X1 (= 677 017 1741224 22 0x17.

回答

まだ回答がありません。

疑問は解決しましたか?