学年

教科

質問の種類

数学 高校生

数Aの青チャート練54(2)の求め方で、 答えのような式では、(↑↑↑→→→→→)のように7回目で到達しているのに8回投げている場合を含んでいるとおもうのですが、なぜそれで求められているのですか? 私は2枚目のように、(7回で到達)+(上で止まって8回で到達)+(右で止まっ... 続きを読む

300数学A 練習 右の図のような格子状の道がある。 スタートの場所から出発し, 3 54 コインを投げて表が出たら右へ1区画進み, 裏が出たら上へ 1区画進むとする。ただし、右の端で表が出たときと,上の端 で裏が出たときは動かないものとする。 ゴール A (1) 7回コインを投げたときに, Aを通りゴールに到達する確 率を求めよ。 (2)8回コインを投げてもゴールに到達できない確率を求めよ。 スタート (1) Aを通ってゴールに到達するのは、4回中 表が2回,裏が2 回出てAに至り、次の3回中、表が2回裏が1回出てゴール に到達する場合である。 したがって、求める確率は出る 3 3 9 したC(1/2)(1/2)x2C(1/1)(1/2)=1/8.1/8-64 (2)8回コインを投げたとき,表の出た回数を x,裏の出た回数 をyとすると,8回コインを投げてゴールに到達するのは, x≧4 かつ y≧3 となるときであるから う事を除いた (x,y)=(4,4), (5,3) [類 島根大] 01 e 8 ←反復試行の確率。 余事象の確率を利用 (2) すると早い。上の事) ←x≧4 かつ≧3 また x+y=8 よって, 8回コインを投げてゴールに到達する確率は (1/2)^(1/2)+(1/2)^(1/1)-(-/-)(70+56) 3 126 = 63 128 63 65 皆 €2 したがって、求める確率は 1- 128 128 検討 (2)8回コインを投げてゴールに到達できないのは, (x, y)=(0, 8), (1, 7), (2, 6), (3, 5), (6, 2), (7, 1), (8, 0) のときである。 このように回数を調べ, 反復試行の確率の公式を使って計算 してもよい。しかし,計算量は先に示した余事象の確率を利 用する解答の方がずっと少なく. らくである。 ろを10 ←1-(ゴールに到達する 確率) ←x3 または y=2 また x+y=8 12 (URSIE) A (S)

解決済み 回答数: 1
数学 高校生

3枚目の式(上の式)から青で囲まれた式にする計算や変形の仕方が分かりません。教えてください🙏🙇‍♀️

00 発点 出た! Aに 道大 さいころを続けて100| 率は 100C× 6100 25 B さいころを100回投げるとき, 1の目がちょうどん回出る。 確率を とすると CHART 確率の大小比較 〇比 Pk+1 pk をとり、1との大小を比べる 指針 (イ)確率かの最大値を直接求めることは難しい。 このようなときは、隣接する2項 (ア) 求める確率を とする。 1の目が回出るとき、他の目が100回出る。 +1の大小を比較する。 大小の比較をするときは,差をとることが多い。 し しかし、確率は負の値をとらないこととCn! r!(n-r)! を使うため、式の中に累乗 や階乗が多く出てくることから, 比をとり、1との大小を比べるとよい。 pk pi+1>1px<P+1 (増加), pk Da+1<1Dr>Da+1 (減少) pk 例題 重要の 57 独立な試行の確率の最大 423 00000 げるとき 1の目がちょうど回 (0≦k≦100) 出る確 であり,この確率が最大になるのはk=のときである。 [慶応大] 基本 49 2章 ⑥ 独立な試行・反復試行の確率 解答 pk=100Ck 30 C* (1) * ( 5 ) 100 * = 100 Cα- 75100-k Pk+1 ここで pk 6 100!.599-k k! (100-k)! (k+1)!(99-k)! 100! 5100-k 6100 反復試行の確率。 <P+= 100C+DX 5100-+1) k! (100-k)(99-k)! 599-* 100-k (k+1)k! (99-k)! == 5.5-5(k+1) 6100 ・・・wkの代わりに k+1 とおく。 pk+1 1 とすると >1 pk 5(k+1) 両辺に 5(k+1)[0] を掛けて 100-k>5(k+1) これを解くと k<- 95 6 =15.8··· よって, 0≦k≦15のとき +1 < 1 とすると Pk<Pk+1 100-k<5(k+1) pk これを解いて k> 95 ・=15.8··· 6 kは 0≦k≦100を満たす 整数である。 pkの大きさを棒で表すと 最大 よって、16のとき pk>pk+1 増加 減少 したがってゆくかく······ < 15<P16, P16 P17>>P100 2012 100 よって,k が最大になるのはk=16のときである。 15 17 16 99

解決済み 回答数: 1
数学 高校生

数Aの反復施行の確率について質問です。 写真の問題のイの式が (5分の3)の二乗×(5分の2)の二乗があるのは分かるのですが、なぜ4P2 ではなく、4C2 をかけるのか分かりません。 PとCの違いは、私の中では並び替えるか、ただ選ぶだけなのか、の違いだと思っているので... 続きを読む

①① ール る る。 O 基本 BURD 50 大会で優勝する確率 3 415 00000 あるゲームでAがBに勝つ確率は常に一定でとする。 A,Bがゲームをし、 5 先に3ゲーム勝った方を優勝とする大会を行う。このとき、3ゲーム目で優勝が ] である。 また, 5ゲーム目まで行ってAが優勝する確率は 決まる確率は 解答 □である。 ただし, ゲームでは必ず勝負がつくものとする。 基本 49 1回のゲームで, A が勝つ (Bが勝つ) 確率が一定であり, 各回のゲームの勝敗は独立 で,これを何回か繰り返した結果の確率を考えるから, 反復試行の確率の問題である。 (ア) Aが続けて3勝するか,または, Bが続けて3勝する場合がある。 この2つの事象は互いに排反であるから 加法定理を利用して確率を求める。 (イ) 求める確率を5C3 (1/2)(7/2) としたら誤り! 5ゲームでAが優勝するのは, 4ゲーム目までにAが2勝2敗とし, 5ゲーム目でAが勝つ場合である。 CHART 反復試行の確率 1枚取り出すとき pen, r nCrp'(1-p)" 1回のゲームで A が負ける (B が勝つ) 確率は 1-- 5 = (ア) 3ゲーム目で優勝が決まるのは,Aが3ゲームとも勝 つか,または, Bが3ゲームとも勝つ場合で,これらは 排反事象であるから,求める確率は TO 3 3 27 8 35 7 + = + = 5 125 125 25 (イ)5ゲーム目まで行って, Aが優勝するのは,4ゲーム までにAが2勝2敗で, 5ゲーム目にAが勝つ場合で あるから, 求める確率は *C₂(3³)* ( 2 ) * × 3 = 6. 2². 3 55 4C21 5 5 = 検討 このような問題では,優 勝する人は最後のゲー ムに必ず勝つ,というこ とに注意が必要である。 加法定理 (1) sc₂ (3)*()* 1±. 2章 8 ⑧ 独立な試行・反復試行の確率 648 3125 5 ゲームすべて行って A が3勝2敗の確率である。 これには○○○××の ような場合が含まれてし まう。

解決済み 回答数: 1
数学 高校生

数学 仮説検定の問題です ピンクマーカーのところ、BはAより強い じゃだめなんですか?

AとBがあるゲームを9回行ったところ, Aが7回勝った。 この結果から, A はBより強いと判断してよいか。 仮説検定の考え方を用い, 基準となる確率を 0.05 として考察せよ。 ただし, ゲームに引き分けはないものとする。 基本191 指針 AはBより強いかどうかを考察するから、 仮説H, として 「AはBより強い」仮説 Ho として 「AとBの強さは同等である」 を立てる。 そして, 仮説 Ho, すなわち,Aの 勝つ確率が1/2 であるという仮定のもとで,Aが7回以上勝つ確率を求める。 なお,ゲームを9回繰り返すから, 確率は反復試行の確率 (数学A) の考え方を用い 求める 反復試行の確率 この試行を2回繰り返し行うとき、 事 する。 Cap (1-p "-" ただし= 0, 1, n 1回の試行で事象E が起こる確率を 象Eがちょうど回起こる確率は [補足 nCy は,異なるn個のものの中から異なる個を取る組合せの総数である。 仮説 H1 : AはBより強い 4 対立仮説 解答」と判断してよいかを考察するために, 次の仮説を立てる。 仮説 H: AとBの強さは同等である 帰無仮説 仮説 H のもとで, ゲームを9回行って, Aが7回以上勝 つ確率は +gCa c{})°(G)+c{}){})+c {\(\)\ 2 +9C7 =/(1+9+36)=512 46 0.089...... これは 0.05 より大きいから, 仮説 H。 は否定できず,仮説 H, が正しいとは判断できない。 勝つ確率は1 「反復試行の確率。 AとBの強さが同等の とき, 1回のゲームで が勝つ確率は1/2,Bが 1/2=12 - したがって, AはBより強いとは判断できない。 である。 検討 AはBより強いと判断できる条件 問題文の条件が、 「ゲームを9回行ったところ, Aが8回勝った」 であったとすると, ゲー ムを9回行って, Aが8回以上勝つ確率は oco(1/2)(1/2)+cm(1/2)^(1/2)=1/08(1 10 (1+9)= = = 0.019..... 512 これは 0.05 より小さいから, AはBより強いと判断できる。 Aが勝つ回数をX とすると, 仮説 H, が正しい, つまり,AはBより強いと判断できるた めの範囲は、例題の結果と合わせて考えると, X≧8 である。このX≧8 つまり, 仮説 H が正しくなかったと判断する範囲 (仮説H を棄却する範囲)のことを棄却域という。 乗 却域は基準となる確率 (この問題では 0.05) によって変わる。

解決済み 回答数: 1
数学 高校生

(1)反復試行の確率について質問です。 黄色いマーカーで囲った部分なのですが、なぜ2/3をかけているのか分かりません。 教えて欲しいです。よろしくお願いします。

・繰り返しのゲームで勝つ確率 標 例題 準 41 反復試行の確率 (3) 2 あるゲームでAがBに勝つ確率は 3 <<<基本例題39.40 000 であり,引き分けはないものとする。 A. Bがゲームをし、先に4勝した方を優勝者とする。 (1)5ゲーム目でAが優勝者となる確率を求めよ。 (2)7ゲーム目で優勝者が決まる確率を求めよ。 CHART GUIDE n回目で決まる反復試行の確率 (n-1) 回目まで反復試行回目にか (n-1) 回目まで反復試行を考え, n回目の確率を掛け合わせる。 (1) Aが4ゲーム目までに3勝1敗) し, 5ゲーム目にAが勝つ場合である。 (2)6ゲーム目まで3勝3敗で, 7ゲーム目で [1] A が勝つ場合 TRAN [2]Bが勝つ場合 の確率をそれぞれ求める。 [1] と [2] は互いに排反であるから, 最後に加法定理を利用 する。 1. 2 引き分けがないので,Bが勝つ(A が負ける)確率は 1-1/2 3 答 の目が出る出回 (1)5ゲーム目でAが優勝者となるのは, 4ゲーム目までにA|(1) A の勝ちをO,負けを が3勝し、5ゲーム目でAが勝つ場合である。は 18 ×で表すと 2 21 よって, 求める確率は Ca = =4× 2 24 64 0: X: 3 3 35 243 1 (2)[1]7ゲーム目でAが優勝者となる場合 であるから,その確率は 2 2 -=20x 181 6ゲーム目までにAが3勝し, 7ゲーム目にAが勝つとき 24 O XOO Ox O 3 37回264回 3通り は ........... 2 O O O X 3 4 O ○○ × 5 0 ズーム UP

解決済み 回答数: 1
数学 高校生

数Aです サイコロの出る目の確率を求める問題なのですが、最小値の意味が分からないです🎲 例の問題では1〜10の数字があるとして、最小値が6である確率を求めるには「すべて6以上のカードから取り出すが、全て7以上になることはない。つまり、すべて6以上からすべて7以上を除いた... 続きを読む

る確 1と ある 4 解答 は 10 = 1/12 であるから、求める確率は カードを1枚取り出すとき、番号が6以上である確率 10枚中 6以上のカード 5 は5枚。 ボタン(1/2)(1/2)-1/ 8 直ちに(1/2)=1/3とし (2) 最小値が6であるという事象は、すべて6以上である という事象から, すべて7以上であるという事象を除い たものと考えられる。 てもよい。 指針 ★ の方針。 反復試行の確率 4(水) カードを1枚取り出すとき、番号が7以上である確率は(*) 後の確率を求める計 10 であるから, 求める確率は 算がしやすいように、約 分しないでおく。 1.C.(1) (1)-(1)-(1)-3-1 53-43 61 = 8 4 10 10 = 1000 (3)最大値が6であるという事象は,すべて6以下である という事象から、 すべて5以下であるという事象を除い たものと考えられる。 カードを1枚取り出すとき, (すべて6以上の確率) (すべて7以上の確率) 計算しやすいように (1)の結果は / であるが, 番号が6以下である確率は 6 よって, 求める確率は 5以下である確率は 10' 5 1 1/8=(1/2)-(1)とす 5 10 10 = 10 10 63 (1)-(1)-6'-5°_216-125 91 = 103 1000 1000 る。 (すべて6以下の確率) (すべて5以下の確率) POINT (最小値がんの確率) = (最小値がk以上の確率) (最小値がk+1以上の確率) 練習 1個のさいころを4回投げるとき, 次の確率を求めよ。 ② 51 (1) 出る目がすべて3以上である確率 (3) 出る目の最大値が3である確率 (2) 出る目の最小値が3である確率 p.424 EX 38、

解決済み 回答数: 1