学年

質問の種類

数学 高校生

この問題の8C7は分かるけど、8C8の意味がよく分かりません、、教えてほしいです🙇‍♀️🙇‍♀️

げた こと ると → 仮 さい 実験 補充 例題 157 反復試行の確率と仮説検定 00006 箱の中に白玉と黒玉が入っている。 ただし, 各色の玉は何個入っているかわ からないものとする。 箱から玉を1個取り出して色を調べてからもとに戻す ことを8回繰り返したところ,7回白玉が出た。 箱の中の白玉は黒玉より多 いと判断してよいか。 仮説検定の考え方を用い, 基準となる確率を0.05 とし て考察せよ。 CHART & SOLUTION 「箱の中の白玉は黒玉より多い」 という主張に対して,次の仮説を立てる 基本 155 61 仮説 白玉と黒玉は同じ個数である そして、仮説, すなわち, 箱から白玉を取り出す確率がであるという仮定のもとで7回 1 2 以上白玉を取り出す確率を求める。なお、箱から玉を取り出してもとに戻すことを8回繰 り返すから, 反復試行の確率 (数学A) の考え方を用いて確率を求める。 反復試行の確率 1回の試行で事象Aの起こる確率をとする。この試行をn回行う反復試行で,A がちょうど回起こる確率は nCrp (1-p) ただし = 0, 1, ......,n なお, Cr は異なるn個のものから異なる個を取り出して作る組合せの総数である。 5章 答 19 箱の中の白玉は黒玉より多い [1][ の主張が正しいかどうかを判断するために,次の仮説を立て 果の る。 仮説 箱の中の白玉と黒玉は同じ個数である [2] [2] の仮説のもとで,箱から玉を1個取り出してもとに戻す ことを8回繰り返すとき, 7回以上白玉を取り出す確率は C(1/2)^(1/2)+.C.(1/2)^(1/2)-12/(1+8)=2536 9 = 0.035······ ◆黒玉を取り出す確率は これは 0.05 より小さいから, [2] の仮説は誤りであると考え られ, [1] は正しいと判断できる。 1-12-12 である。 00 仮説検定の考え方 したがって, 箱の中の白玉は黒玉より多いと判断してよい。 inf条件が 「8回繰り返したところ, 6回白玉が出た」 であるなら, 6回以上白玉を取り出す確率は C(1/2)^(1/2)+C(1/2)^(1/2)+nCd(1/2)^(1/2)2-12/21 (1+8+ (1+8+28)= -=0.144...... 37 256 これは 0.05 より大きいから, 白玉は黒玉より多いと判断できない。 [2] の仮説は棄却されない。 なお、白玉を取り出す回数をXとすると, [1] の主張が正しい, つまり、白玉は黒玉より多いと 判断できるための範囲は、例題の結果と合わせて考えると,X≧7 である。 PRACTICE 157° AとBがあるゲームを10回行ったところ,Aが7回勝った。この結果から,AはB より強いと判断してよいか。 仮説検定の考え方を用い, 基準となる確率を0.05 とし

解決済み 回答数: 1
数学 高校生

この2番目の問題についてなんですが,なぜわざわざ,Pk+1とPk の比を取ってるんですか? 指針にも書いてあるのですが,あまりよくわからなく,理解ができません。

423 「さいころを続けて100回投げるとき 1の目がちょうど回 (0≦k≦100) 出る確 率は100CkX. 指針 (ア) 6100 であり,この確率が最大になるのはk=1のときである。 メーカーの [慶応大] 基本49 求める確率をかとする。この目がを回出るとき、他の目が100-4回出る。 (イ)確率力の最大値を直接求めることは難しい。 このようなときは、隣接する2項 +1 とかの大小を比較する。 大小の比較をするときは,差をとることが多い。し かし,確率は負の値をとらないことと "Cr= r!(n-r)! n! を使うため、式の中に累乗 や階乗が多く出てくることから,比をとり、1との大小を比べるとよい。 pk pk+11<ph+1 (増加), pk pk +1<1>D+1 (減少 ) CHART 確率の大小比較 It Pk+1 をとり、1との大小を比べる pk 2章 8 ⑧ 独立な試行・反復試行の確率 確率を とすると 「さいころを100回投げるとき 1の目がちょうど回出る 解答 100-k pk=100Ck 75100-k =100CkX 人の中か 6100 反復試行の確率。 Pk+1 100!.599-k ここで pk k! (100-k) (99-k)! +(k+1)k! (k+1)!(99-k)! (99-k)! 100-k ->1 5(k+1) 5.599-* 5(k+1) k!(100-k)! 5100-(+1) 100! 5100-k p+1=100C(e+) × 6100 599-k 100-k ・・・ 代わりに +1とおく。 pk+1- > 1 とすると pk 両辺に 5(k+1) [>0] を掛けて 100-k>5(k+1)=Cal 95 これを解くと k<=15.8・・・ 6 よって, 0≦k≦15のときか DDk+1は≦k≦100を満たす 整数である。 pk Dk+1 <1 とすると 100-k<5(k+1) P(ARB) pkの大きさを棒で表すと これを解いて 95 k>=15.8・・・ 6 PLAY 最大(E) n(U) 増加 減少 よって、16のとき pk > Pk+1 Po<p<<15<p16, したがって P16> D17> ・>P100 3つめ 人 よって, D が最大になるのはk=16のときである。 2012 100k 15 17 16 99 TE 88

解決済み 回答数: 1
数学 高校生

確率の問題です。(2)で6が出て、残りは6から10のうちどれか二つみたいに考えるのはだめですか?

基本例題 51 最大値・最小値の確率 0000 箱の中に、1から10までの整数が1つずつ書かれた10枚のカードが入っている。 この箱の中からカードを1枚取り出し、書かれた数字を記録して箱の中に戻す。 この操作を3回繰り返すとき,記録された数字について,次の確率を求めよ。 (1) すべて6以上である確率 (3)最大値が6である確率 (2)最小値が6である確率 「カードを取り出してもとに戻す」ことを繰り返すから,反復試行である。 基本 49 417 (2) 最小値が6であるとは,すべて6以上のカードから取り 出すが、すべて7以上となることはない,ということ。 つ まり, 事象A:「すべて6以上」 から, 事象 B : 「すべて 7 以 上」 を除いたものと考えることができる。 (2) 最小値が 6以上 (3)最大値が6であるとは,すべて6以下のカードから取り 出すが すべて 以下となることはないということ。 最小値が 以上 最小値が6 (1) カードを1枚取り出すとき, 番号が6以上である確率 10枚中6以上のカード 5 2章 ⑧ 独立な試行・反復試行の確率 解答 は 10=1/2 であるから、求める確率は は5枚。 直ちに (12/2)=1/3とし (2)最小値が6であるという事象は,すべて6以上である という事象から, すべて7以上であるという事象を除い 指針_ .... ★ の方針。 たものと考えられる。 てもよい。 カードを1枚取り出すとき、番号が7以上である確率は (*)後の確率を求める計 4(*) であるから、求める確率は 10 算がしやすいように, 約 分しないでおく。 1/2-C (1) (1)-(1)-(10)- 5/101 53-43 61 (すべて6以上の確率) 1000 8 (3)最大値が6であるという事象は,すべて6以下である という事象から、すべて5以下であるという事象を除い たものと考えられる。 カードを1枚取り出すとき, 6 10 -(すべて7以上の確率) (1)の結果は 1/3であるが, 計算しやすいように 5 番号が6以下である確率は 5以下である確率は よって、求める確率は 1/8=(1/2)-(1)とす 10 る。 (1)-(1)-6'-5216-12591 = 103 1000 1000 (すべて6以下の確率) (すべて5以下の確率) POINT (最小値がんの確率) = (最小値がん以上の確率) (最小値がk+1以上の確率) (2)出る目の最小値が3である確率 p.424 EX38、 練習 1個のさいころを4回投げるとき、次の確率を求めよ。 951 (1)出る目がすべて3以上である確率 (3)出る目の最大値が3である確率

解決済み 回答数: 1
数学 高校生

普段から図形は書いた方がいいですかね? こういう系の図がへったくそで時間食っちゃうので書かないんですが、書くコツありますか? この問題ではどんな図になるか教えて欲しいです🙏

3iを単位とし、COS・ +isin とする。 (1) イであり、 3n ウイである。 (2) n = (21) カー1 -1 あり、 (3) コである。 また、 (2n-1)-1, n-1 である。 K+ である。 ギ ケで 2 lafe 25× (25点) 14を自然数とし、関数fn (z) =logx (0) とする。 座標平面上の曲線 =jn (z)上の点(a,∫(q))における接線が、座標平面の原点を通るという。 ただし、 log は自然対数を表し、文中のeは自然対数の底を表す。 回 (1) 接線の傾きは |ア + である。 (2)In-fn(x)dx とすると tge el f (3)領域Dの面積は チ シテ 日 シテ である。また、領域Dをェ軸のまわりに1回転させてできる立体の体積は ヌネ ホ ノハヒ ノハヒ である。 f(x) A (x)'g+x (25点) = -n x™ logx tx="x" -n-t グリッx+x -n-I (-vlx+1) い af() x 必ず!! x=a, 9=an log a 3 f alog ath lay a =ah log a + fa 1 Z 2 1 1 z) (1+z) 1 1-2 1 + 1-z 2 1 1+222 + +2z2 ) (1+z²) 21_5 + = 2 1 + 4+ 2 →ス・ 2 T セ Nor 力 ケコ タ 1₁ = 110 = オ キク サシス である。 n=5とする。このとき, 曲線Cと接線およびェ軸によって囲まれた領域 (境界 を含む)をDとする。

解決済み 回答数: 1
1/37