学年

教科

質問の種類

数学 高校生

(2)についてなのですが、私の回答が間違いなのはなぜでしょうか?

No. Date (3) 56. 5m (1全体の数をxとする 6cm 5 H 6 r [n]]]] Date. 200 Aの個数は G.7x Aの不良品数は0.3.0.7x Bの個数は0.3x Bの不良品数は0.3x-0.05. よってP(E) (2) PE(A) = 0.03.0.7x+0.3x20.05 XCI =0.02x+ こ JJ = = XC₁ 0.036x÷x 36x 1000 250 9 250 WER 0.0.15x 21 x PE (A) = 0.021 x ²9 256 1000 PCEDA)なので、DF(A)=0.021x PETA) PE) 1,000 1 1 x P(A) O 1000 250 ス・x KRENAL PCEVA) 7x 12 (P(E) 56 原因の確率 基本例題 ある部品を製造する機械 A,Bがあり、不良品の発生する割合は,Aは3 58では5%であるという。 Aからの部品とBからの部品が7:3の割合 00000 ※大量に混ざっている中から1個を選び出すとき、それが不良品であるとい う事象をEとする。 (1) 確率P(E) を求めよ。 (2) 事象Eが起こった原因が,機械Aにある確率を求めよ。 OLUTION CHARTO 事象 E (結果) を条件とする事象A (原因) の起こる確率 P(ENA) P(E) Bの製品であるという事象をBとすると 3 10' 条件付き確率PE (A)= (1) 排反な事象に分解して求める。 (2)「不良品である」ということがわかっている条件のもとで、それが機械Aの製 品である確率(条件付き確率)を求める。 解答 選び出した1個が, 機械Aの製品であるという事象をA, 機械 inf. 次のように、具体的 3 100' 47,P(B)= PA(E)=- PB (E) = 10' 5 100 P(A)=- 不良品には,機械Aで製造された不良品と機械Bで製造さ れた不良品の2つの場合があり,これらは互いに排反である。 P(E)=P(A∩E)+P(B∩E) よって =P(A)PA (E)+P(B)PB (E)= (2) 求める確率は PE (A) であるから P(ENA) P(ANE) P(E) PE(A)= P(E) 7 3 3 100 10 × + 10 20956 × ÷ 7 12 9 21 250. 1000 9 5 100 250 <INFORMATION 原因の確率 上の例題 (2) は, 「不良品であった」という“結果”が条件と して与えられ、「それが機械Aのものかどうか」という“原 因” の確率を問題にしている。 この意味から (2) のような 確率を原因の確率ということがある。 基本53 な数を当てはめて考えると, 問題の意味がわかりやすい。 全部で1000個の製品を製 造したと仮定すると 機械 製造数 不良品 A 700 21 B 300 15 計 1000 36 (1) の確率は (2) の確率は E 21 E 317 1000 36 1000 241 250 A B ANE BOE 9 3 250 200 2章 9 250 21 7 36 12 6 条件付き確率 確率の乗法定理 PRACTICE・・・ 56 ③ ある集団は2つのグループA, B から成り, Aの占める割合は40 「生したときに, 選び出された1個がBのグループに属している確率を求めよ。 %である。 また, 事象Eが発生する割合がA では 1%, B では3%である。 この集 団から選び出した1個について, 事象Eが発生する確率を求めよ。 また、事象Eが発

回答募集中 回答数: 0
数学 高校生

bが当たる確率は、aと同じように1/4なのになんで確率の加法定理を使わないといけないんですか?? あと、AとBの和事象でどうしてBの確率が出てくるんですか?

290 00000 基本例題 36 確率の加法定理 (順列) 20本のくじの中に, 当たりくじが5本ある。 このくじをa, b2人がこの順 p.284 基本事項 に1本ずつ1回だけ引くとき, a, b それぞれの当たる確率を求めよ。ただ し,引いたくじはもとに戻さないものとする。 CHARTO SOLUTION 解答 確率P(AUB) A, B が排反ならP(A)+P(B) ......!! b が当たる場合は、次の2つの事象に分かれる。 A:aが当たり , bも当たる よって,事象 A,Bの関係 (A∩B=Øかどうか) に注目する。 なお,確率の乗法定理 (p.310 参照) を利用してもよい。 5 1 20 4 B:a がはずれ,bは当たる a が当たる確率は 次に,a, b2人がこの順にくじを1本ずつ引くとき、起こりう るすべての場合の数は 20P2=380 (通り) このうち, bが当たる場合の数は A: a が当たり, bも当たる場合 P220(通り) B: a がはずれ, b が当たる場合 15×5=75 (通り) A,Bは互いに排反であるから、確率の加法定理により, bが当たる確率は 20 75 95 1 380 1380 380 P(AUB)=P(A)+P(B)=; + 5P₁ 20P₁ でも当たる確率 ◆2本のくじを取り出して a,bの前に並べる場合 の数。 amoupra ◆ 事象 A, B は同時に起 こらない。 INFORMATION 当たりくじを引く確率は同じ 上の例題において,1本目が当たる確率と2本目が当たる確率はともに 1/2 で等しい。 一般に, 当たりくじを引く確率は, 引く順番に関係なく一定である。 また,引いたくじをもとに戻すものとすると、1本目が当たる確率と2本目が当たる 確率はともにである。したがって 当たりくじを引く確率は,引く順,もとに戻す、もとに戻さないに関係なく等しい。 PRACTICE・・・・ 36 ② ずつ1回だけ引くとき、 次の確率を求めよ。 ただし, 引いたくじはもとに戻さないも 20本のくじの中に当たりくじが4本ある。 このくじをa,b,c 3人がこの順に、1本 のとする。 (1) り る確率

回答募集中 回答数: 0
数学 高校生

2枚目の問題は36(2)のように加法定理で解けないんですか?

00000 いただ 基本例題 36 確率の加法定理 (順列) p.284 基本事項| ~20本のくじの中に, 当たりくじが5本ある。 このくじをa, b2人がこの に1本ずつ1回だけ引くとき, a, b それぞれの当たる確率を求めよ。 し、引いたくじはもとに戻さないものとする。 順書きにしている=「P」を使う!! CHARTO SOLUTION 解答 確率 P(AUB) A,Bが排反ならP(A)+P(B)・・・・・・・ b が当たる場合は、次の2つの事象に分かれる。 U...... Baがはずれ,bは当たる A:aが当たり, bも当たる よって, 事象 A, B の関係 (A∩B=Ø かどうか) に注目する。 なお、確率の乗法定理 (p.310 参照) を利用してもよい。 5 1 20 4 a が当たる確率は 次に,a, b2人がこの順にくじを1本ずつ引くとき、起こりう るすべての場合の数は 20P2=380 (通り) このうち,bが当たる場合の数は A:aが当たり, bも当たる場合 5P2=20 (通り) B:aがはずれ, bが当たる場合 15×5=75 (通り) A,Bは互いに排反であるから、確率の加法定理により, bが当たる確率は P(AUB)=P(A)+P(B)= 20 75 95 + 380 380 380 = INFORMATION 当たりくじを引く確率は同じ 5P1 20P1 ◆2本のくじを取り出し a,bの前に並べる の数。 ◆事象 A, B は同時に こらない。 基本例題 袋の中に白 (1) 白玉が (2) 同じ色 CHART 上の例題において, 1本目が当たる確率と2本目が当たる確率はともにで等しい 一般に,当たりくじを引く確率は,引く順番に関係なく一定である。 また,引いたくじをもとに戻すものとすると, 1本目が当たる確率と2本目が当た 確率はともに 1/14 である。したがって 当たりくじを引く確率は, 引く順, もとに戻す, もとに戻さないに関係なく 確率 P (2) (1) れら 解答 9個の中から (1) 白玉2個 よって, 求 (2) 同じ色の A: B: の和事象で Aが起こる PRACTICE36② 20本のくじの中に当たりくじが4本ある。 このくじを a, b, c 3人がこの順に、 ずつ1回だけ引くとき, 次の確率を求めよ。 ただし引いたくじはもとに戻さない Bが起こる よって, Pe INFORM 上の例題で り出した王 (1 白玉が2個 したがって PRACTICE 1から9 この中か また、 9

回答募集中 回答数: 0
数学 高校生

この問題の記述についてなのですが、P(A)PA(w)のように書き換えないと減点になるのでしょうか。原因の確率も書き換えが必要なのでしょうか。よろしくお願いします。

13つの袋から1つの袋を選び, /その袋から球を1個取り出したところ白球であっ 指針>袋Aを選ぶという事象をA, 白球を取り出すという事象をwとすると, 求める確率は 重要例題63 ベイズの定理 OOO0 |:袋Cには赤球4個,白輝3個, 青球5個が入っている。 6回彼から1つの袋を選び、その袋から球を1個取り出したところ白球であっ 基本 62 P(WnA) P(W) 条件付き確率 P(A)= 上って、P(W), P(ANW)がわかればよい。まず, 事象 Wを3つの排反事象 「1] Aから白球を取り出す,[2] Bから白球を取り出す, [3]_Cから白球を取り出す に分けて,P(W)を計算ずることから始める。また P(ANw)-P(A)P,(W) である。……の ないに販 解答 袋A, B, C を選ぶという事象をそれぞぞれA、B、Cとし, 白球 | © 複雑な事象 を取り出すという車事象をWとすると P(W)=P(AnW)+P(BnW)+P(cnw) =R(4)Pa(W)+P(B)P。(W)+P(C)P.(W) 15, 1 排反な事象に分ける 加法定理 (乗法定理 1.4 3 18 13_5 3 12 54 2 1 1 A B C ANWBOW\cnw 2 27 3 18 27 12 4 11 wE5 54 1 って, 求める確率は P(ANW) P(W) 12 P(A)P(W) 5 1 10 Pw(A)= 三 P(W) 54 4 27 同時確率でないとき PC

回答募集中 回答数: 0