数学
高校生

2枚目の問題は36(2)のように加法定理で解けないんですか?

00000 いただ 基本例題 36 確率の加法定理 (順列) p.284 基本事項| ~20本のくじの中に, 当たりくじが5本ある。 このくじをa, b2人がこの に1本ずつ1回だけ引くとき, a, b それぞれの当たる確率を求めよ。 し、引いたくじはもとに戻さないものとする。 順書きにしている=「P」を使う!! CHARTO SOLUTION 解答 確率 P(AUB) A,Bが排反ならP(A)+P(B)・・・・・・・ b が当たる場合は、次の2つの事象に分かれる。 U...... Baがはずれ,bは当たる A:aが当たり, bも当たる よって, 事象 A, B の関係 (A∩B=Ø かどうか) に注目する。 なお、確率の乗法定理 (p.310 参照) を利用してもよい。 5 1 20 4 a が当たる確率は 次に,a, b2人がこの順にくじを1本ずつ引くとき、起こりう るすべての場合の数は 20P2=380 (通り) このうち,bが当たる場合の数は A:aが当たり, bも当たる場合 5P2=20 (通り) B:aがはずれ, bが当たる場合 15×5=75 (通り) A,Bは互いに排反であるから、確率の加法定理により, bが当たる確率は P(AUB)=P(A)+P(B)= 20 75 95 + 380 380 380 = INFORMATION 当たりくじを引く確率は同じ 5P1 20P1 ◆2本のくじを取り出し a,bの前に並べる の数。 ◆事象 A, B は同時に こらない。 基本例題 袋の中に白 (1) 白玉が (2) 同じ色 CHART 上の例題において, 1本目が当たる確率と2本目が当たる確率はともにで等しい 一般に,当たりくじを引く確率は,引く順番に関係なく一定である。 また,引いたくじをもとに戻すものとすると, 1本目が当たる確率と2本目が当た 確率はともに 1/14 である。したがって 当たりくじを引く確率は, 引く順, もとに戻す, もとに戻さないに関係なく 確率 P (2) (1) れら 解答 9個の中から (1) 白玉2個 よって, 求 (2) 同じ色の A: B: の和事象で Aが起こる PRACTICE36② 20本のくじの中に当たりくじが4本ある。 このくじを a, b, c 3人がこの順に、 ずつ1回だけ引くとき, 次の確率を求めよ。 ただし引いたくじはもとに戻さない Bが起こる よって, Pe INFORM 上の例題で り出した王 (1 白玉が2個 したがって PRACTICE 1から9 この中か また、 9
No. Q カードが5枚ある。 1 3 14 5 ◎依ずつ引いて、1枚目が①、2枚が②である確率を求めよ。 →順番を気にしている 順列Pを使う!! Date 1枚目が1~⑤の5通り、2枚目が目で引いていないカード4迫り これらは同時に起こるので、 5.4=20通り1分) 52 P₂D Aとかる場合は、「1枚目が①1」から「2期が②」の1通り(分) よって求める確率は、 カードを同時に2枚引いて、引いたカードが①と②になる確率 組み合わせ「C」を使う!! →順番を気にしない

回答

まだ回答がありません。

疑問は解決しましたか?