学年

教科

質問の種類

数学 高校生

1枚目の11番のところのtheyと21番のthisはそれぞれ何を示しているのか教えてください。 2枚目の17番のweを示しているのは誰ですか。 3枚目の6番のsheはだれを示しているのか。 至急お願いします

Date 1. English as a ( 19 2 ) to one ( English )( 3 native English speakers ( 4 only a ( 5 English is now used more often/ 6 between ( )-(. most native speakers /tadé// )( .)/ ) of the world's English speakers. // ) speakers / 11 they 12 The English( 13 is called English as a lingua franca / 14 or ELF.// LESSON 4 than between ( 8 For example,/ 9 when business people from Japan, China, and Korea / 10 have a meeting,/ ) speakers. // 15 In using ELF,/ 16 you should speak clearly and simply.// 17 You should also ( ) on ( 18 For example, / ), / ) their business in English. // Xin this ( 20|( 21 This is not a problem/ 22 because we can understand both.// )(ELF) 23 However, / 24 if you say /dadér/ or /tatér/, / 25 no one will understand what you say.// 26 This example shows us/ ) some usually say /tadáw/// →このような例とは? 27 that consonants are more important than ( today as DL Part 3 どのような状況? ). // ) 11 ネ法 Japanese 国際共通語としての英語(ELF) ある概算によると 英語母語話者[ネイティブスピーカー] は 占めるにすぎません 世界の英語話者のたった4分の1を 今では、よく英語が使われています 非母語話者[非ネイティブスピーカー] 間 のほうが 母語話者 [ネイティブスピーカー] 間よりも たとえば 日本,中国, 韓国の実業家が 会議をするとき 彼らは英語で彼らのビジネスについて話 し合います このような状況で話される英語は 国際共通語としての英語と呼ばれます またはELFと ELFを使うときは はっきりと, 簡潔に話すべきです また、子音にも注意を集中させるべきで す たとえば たいていの母語話者[ネイティブスピーカー] は todayを/tadér/ と発音します 一方で、 普段は/tadá / と言う人もいま す これは問題ではありません 私たちは両方とも理解できるので しかしながら もし/dadér/か/tatér/ と言えば あなたの言うことはだれもわからないで しょう この例は、私たちに示しています 重要であることを

未解決 回答数: 1
数学 高校生

この四角でかこったとこがなぜそうなるのかわかりません、 写真2枚目にあるように、確率の乗法定理により、かけると思いました、 教えてください!

指針 (1) の確率は PA (B) である。 条件付き確率の定義式 ne PA(B) == を利用して求めてもよいが,この問題のように, 個数の状態の変化の過程がわかる! のは, 解答のように考えた方が早い。 1回目に赤玉を取り出すという事象をA,2回目に赤玉を 解答 取り出すという事象をBとする。 (1) 求める確率は PA(B) 1回目に赤玉が出たとき, 2回目は赤玉4個、青玉4個の 計8個の中から玉を取り出すことになるから POA 4_1 200 PA(B)= 8 2 (2) 求める確率はP (B) 1回目に青玉が出たとき, 2回目は赤玉5個、青玉3個の 計8個の中から玉を取り出すことになるから 10. よって ANBの起こる確率 _P(A∩B) A の起こる確率 よって PA(B)=- Pa (B)= 5 8 別解] [条件付き確率の定義式に当てはめて考える] 5P₂ 5.4 5 (1) P(A)= 5, P(ANB)= 9' OP2 9.8 18 PÂ(B)= P(A∩B) P(A) (2) P(A)= 4, P(ÃΜB)=¹P₁X5P₁ P(A∩B) EP(A) 5 18 P2 5 P(A) 全体をAとしたときのA∩Bの割合 ·1· 18 || 5-94-94-9 ÷ 4-5 9.8 5 = 18 5 = 9 1 2 5 18 ( 59 5 18 4 8 (1) 041 〇4個 051 031 O 188 赤玉 考える。 O 1BB 残りを 考え 「取り出した玉を振 と考え、順列を利 取り出し方を数え 例えば、(1)では P(A∩B)に関し Ri, R2, 5個を 青玉4個を Bt, B〟 と区別して 並べ方 P2通りとして 2080 ⑨58 出し, それをもとに戻さないで、続けてもう1枚取り出す。 練習 1から15までの番号が付いたカードが15枚入っている箱から, カードを (1) 1回目に奇数が出たとき, 2回目も奇数が出る確率を求めよ。 (2)1回目に偶数が出たとき, 2回目は奇数が出る確率を求めよ。

未解決 回答数: 1
数学 高校生

下の方で矢印で示した式変形がどうも上手くいきません。どなたか途中式を示して頂けないでしょうか。

Check 例題 298 (1) bn= a=8, an+1= 解答 考え方 (1) (α>β) の値を求めよ. (2) 数列{an}の一般項an を求めよ. TA {bn}が等比数列になるのは, bn+1=rb, (公比r) と表されるときである.そのた めに, bn+1 を考えて, これを漸化式を利用して α で表してみる. (2) (1)で導いた {bn} を利用して一般項を求める. (1) bn+1= によって定義される数列{an}がある. an-β とおくと、数列{bn}が等比数列になるような,α, B an-a PRERAD .243 14 (668) ((2) 練習 [298] **** 分数型の漸化式 (2) 3an+2 an+2 = an+1-β an+1 - a mmmm 2-2a -α= 乗世界である003-4-B=23-28 3-β_3+1 3-43-2 つまり, 2-2β (3-B)an+2-2B3-Ban 3-B 部分が同じ形 (3-α)an+2-2a 3-a 2-2a an+ 3-B 3-a になれば, を 3-a したがって,数列{bn}が等比数列になるための条件は,公比として {bn} は 等比数列になる. この場合 α, B は, -x (3-x)=2-2x の2つの解であり, x2x-2=0 より, x=2, -1 a>より, α=2,β=-1 an+1 3 において、an-22 よって, 8+0 3 - に対し下また, b=a1+1 = 8+1 a₁-20-8-2 2 (1) bn= であり、これより = an= a1=2, an+1= 3an+2 an+2 3an+2 an+2 ・B a 6.4+8 3.4-8 an+B anta となり値を求めよ。 ・4n-1 3 漸化式と数学的帰納法 =4であるから, (1) より, bn+1=4bn 3x 23), b₂=2.4"-1 より, 3an+2-β(an+2) 3an+2-α(an+2 ) STAD **** (2) 数列{an}の一般項 αn を求めよ. 漸化式を用いるため bn+1 を考える. mm 特性方程式 (p.526 参照) x= 3x+2 x+2 より、 x2+2x=3x+2 (x-2)(x+1)=0 x=2, -1 と同じ解になる. 2(an+1) =3.4-1 (an-2) an= 6.4-1+2 3.4-1-2 6.4" +8 3.4"-8 4an+1 によって定義される数列{an}がある. 2an+3 とおくと,数列{bn}が等比数列になるような, α, B(α>B) の SENS 525 第8章 p. 566 30

解決済み 回答数: 1
数学 高校生

D<0のときって数Ⅰでは「実数解を持たない」 と習ったような気がしたのですが、 「実数解をもたない」なのか「2つの虚数解を持つ」なのかは どうやって判断すれば良いのでしょうか??

68 基本例題 38 2次方程式の解の判別 次の2次方程式の解の種類を判別せよ。 ただし, kは定数とする。 (1) 3x²-5x+3=0 (2) 2x²-(k+2)x+k-1=0 (3) x2+2(k-1)x-k²+4k-3=0 pp.66 基本事項 指針 2次方程式 ax2+bx+c=0の解の種類は,解を求めなくても、判別式 D の符号だけで 別できる。 2次方程式の解の判別 [D>異なる2つの実数解 D=0⇔重解重解はx=- 解答 与えられた2次方程式の判別式をDとすると (1) D=(-5)-4・3・3=-11<0 よって異なる2つの虚数解をもつ。 (2) _D={-(k+2)}²−4•2(k-1)=k²+4k+4-8(k-1) D<0⇔ 異なる2つの虚数解 (2),(3) 文字係数の2次方程式の場合も,解の種類の判別方針は, (1) と変わらないが, がんの2次式で表され,kの値による場合分けが必要となることがある。 =k²-4k+12=(k-2)+8 ゆえに,すべての実数んについて D>0 よって、 異なる2つの実数解をもつ。 (3) =(k-1)²-1·(−k²+4k-3)=2k²-6k+4____ =2(k²-3k+2)=2(k-1)(k-2) よって, 方程式の解は次のようになる。 D0 すなわち k<1,2くんのとき 異なる2つの実数解 D = 0 すなわち k=1,2のとき 重解 D< 0 すなわち 1 <k<2のとき 異なる2つの虚数解 ・D<0- 一D>O¬ 2 b 2a ・D> 0 - 00000 •S•)—²a\±¿— TUS 01 CON {-(k+2)}^の部分は, (-1)' = 1 なので、 (+2)^ と書いてもよい。 ax2+26'x+c=0 では a=b"-ac を利用する。 D α<βのとき (x-α)(x-B)>0 ⇒x<a, B<x α<βのとき (x-α)(x-B) <0 ⇔a<x<B

解決済み 回答数: 1