学年

教科

質問の種類

数学 高校生

微積分の問題で(2)についてです。Y=X^3-4X^2+4Xの極大値(2/3,32/27)をY=KXに代入して求めた傾き(K)よりも小さけ れば共有点を2個もつと考えたのですが間違っていました。どこで間違えてるのか教えてほしいです🙏🏻

微分法・積分法 3次関数のグラフ a=0, b=0のとき y=x³ y=3x で x=00 a=0, x=0のときは0となるから、Cの形はGである。 b=1のとき y=x+x Cの概形はG2 である。 AB y=3x2+1 で すべてのxについて>0となり、増加関数であるから AC a=-2.6=0のとき y=x-2x y=3x²-4x=3x(x-1) 4 3=0より x=0.1/2 0 となりの増減表は次のようになる。 XC + 0 - y' 0 1430 + 32 y 27 よって、Cの概形はGである。 A D () a=-4,6=4のとき y=x-4x2+4x y' =3x²-8x+4 = (x-2)(x-2) y=0より x= 2 3' 2 となり、yの増減表は次のようになる。 A G, G2 とも増加関数であるが、 (ア)ではC上の原点における接線 この傾きが0となるから, G. G2 のうちGが正しいグラフとな る。 B 曲線 y=f(x) 上の点(a.f (a)) における曲線の接線の傾きは f'(a) C (ア)の場合と違って、x軸に平行 となる接線が引けないような増 加関数であるから, G. G2 の うち G2 が正しいグラフとなる。 x ... y' 3 y + 23037 .... 2 0 + E 0 よって、Cの概形は G3 である。 (ア)~(エ)から、G1~G の曲線Cの概形の組合せは②となる。 |(2) a=-4,b=4 のとき y=x4x2+4x 上の原点における接線の 方程式はx=0 のとき,y'=4であるから F y=4x 右の図より求めるkの値の範囲は 0<k<4 2 y 2 y=x-4x²+4x/ y=4x y=kx 0 2 x 増減表からCは原点でx軸に 接している。 E 増減表から、Cは点 (20) x に接している。 F 接線の方程式 曲線 y=f(x) 上の点 (a.f (a)) における曲線の接線の方程式は y-f(a)=f'(a)(x-a) Point 2=0のとき=4(60)をまから 傾き ここを代入して (1) では、 導関数の符号を把握して3次関数のグラフの増減が正しく理解でき |ているかが問われている。 (2)では,曲線 y=x4x²+4x は原点を通りx と接することがわかっている。そのことを利用して直線 y=kxとの共有 点の考察をしていけばよい。 G 直線 y=kx の傾きが0より大 きく4より小さいとき、 曲線 y=x-4.x +4x と直線 y=kxx>0における共有 点は2個となる。 -79-

解決済み 回答数: 1
数学 高校生

2枚目画像のR(S=2)のところで、確率を求めている式の真ん中の3!/2!が何をしているのかがわかりません。教えてください。

第3問 場合の数 確率 【解説】 以下では, 東方向への移動を 南方向への移動を 西方向への移動を 北方向への移動を↑ とし,点Aから出発する経路と4種類の矢印の並べ方を対応さ せて考える.例えば,→→→ という並べ方に対しては次図の (a)の経路が対応し、という並べ方に対しては次図 の (b) の経路が対応する。 逆に,点Aから出発する経路を1つ定め ると,それに対応する矢印の並べ方が1つ得られる。 (コ) B B 「よりも左側に↓があるものの個数を考える。 まず、 、 、 の並べ方が, -=35 (通り) あり、その各々に対して4個の□への 1, 1, 1, ↓の配置の、 仕方が 4, 1, 1, ↑ *1, 1, 1. t 1. 1. L. 1 の3通りずつあるから, 北方向への移動を3回, 南方向への移動 を1回 東方向への移動を3回行うような移動の仕方の数は、 例えば、4個のと3の一の並べ 35通りのうちの1つとして。 ローローロー 35x3 105 (通り)。 四 南北の4枚のカードから無作為に1枚を引く 2 がある。 このとき、条件を満たすように 3の1と1個のを口へと配置す ることで. A (b) (1) 点Aを出発し, 5回の移動後に点Bにいる移動の仕方の数は 1. 1. →,,の並べ方の個数であるから, 5! = 10 (通り)。 2!3! 同じものを含む順列 (2) 点Aを出発し、7回の移動後に点Bにいる移動の仕方のうち、 点Cを通るものは、点Aから点Cに移動するまでに2回, 点 から点Bに移動するまでに5回の移動をすることになる。 点Aから点Cまでの移動の仕方の数は1の並べ方の個数 であるから. のもののうち、αが、 . が ...... あると これらのものを並べてでき 順列の総数は、 (通り) mimi (n=m₁+m+ +m₂) 2!=2 (通り)。 である。 この各々に対して,点Cから点Bまでの移動の仕方の数は 「. の並べ方の個数だけあるから, =5 (通り)。 よって, 点Aを出発し、7回の移動後に点Bにいる移動の仕方 のうち,点を通るものの数は, (通り). また北方向への移動を2回, 西方向への移動を1回 東方向 への移動を4回行うような移動の仕方の数は 1. 1.←→,→ →の並べ方の個数であるから, とき 引き力は4通りあり、これらはすべて同様に確からしい。 よって,, . 1.の移動が起こる確率はすべてである。 ただし、試行を行った点において、道がない方向のカードを引い た場合は移動ではなく Stay が起こる。 (3)点Aを出発し、5回の試行後に点Bにいるのは、 が2回, が3回起こる場合である。 (1)より,その確率は、 -1-1-11 [1] →1→1→ 11-1-1- の3通りの並べ方が得られる。 (4)( (4) 点Aを出発し、7回の試行後に点Bにいるような事のうち. Stay がちょうどk 回 k=0.2) だけ起こる事象をR(S=k) と す。 まず、R(S-2)のうち, D, を過るものについて考える. このとき、最初の2回の試行でDに到達する必要があるから、 が2回起こればよく、その確率は、 Stay がちょうど1回だけ起こると 残りの6回の試行では、7回の行に にいるように移動することができ ない。 また, Stay が3回以上起こると 残りの4回以下の試行ではBに することができない。 (+ さらに、残りの5回の試行で その事は、 が起これば試行でD, からBへ到するに (+)(4)-10(4) よって、 R (S2) かつ 「D, を通る」 確率は, 8. 105 (通り) ... 次に,R(S-2)のうち、D, を通らずにDを通るものについ て考える。 次に,f, f, f. 4.,,の並べ方のうち、3個目の このとき、最初の3回の試行でD, を通らずに D2 に到達する必 25- はが3回起こる必要があり、残りの2 回でStay. つまり「がない」が起 こればよい D, D, D, B

回答募集中 回答数: 0
数学 高校生

確率を求める問題なのですが点を固定して考えないで6^3としてしまいました。この方法ではなぜいけないのか教えて頂きたいです。よろしくお願い致します。

例題 13.2 4/19 半径1の円に内接する正六角形の頂点を A1, A2, ..., Ag とする.これらから, 無作為に選んだ3点(重複を許す)を頂点とする三角形の面積の期待値(平均値)を求 めよ. 2つ以上が一致するような3点が得られたときは,三角形の面積は0と 考える. 【解答】 正六角形A1A2 A3 A4 A5 A6 が内接する円の中心をO とする. A1 2=AAAA BAAAA A2 A6 88-,A,AA A3 A5 A4 無作為に選んだ1つの頂点をA,とし,固定して考える。 65 ※重複を許すので かくりの合計が1にならないことに 注意!! このとき、他の2頂点の選び方の総数は62=36(通り) あり,これ らは同様に確からしい。 車は9 そして、次の4つの場合が考えられる. (ア) 三角形 A1A2A6 と合同な三角形ができる. (イ) 三角形 A1 A3A5 と合同な三角形ができる. (ウ) 三角形A1 A2A4と合同な三角形ができる. (エ) A」 を含めて2点以上が一致する (ア)のとき,他の2頂点について, (A2, A3), (A3, A2), (A2, A6), (A6, A2), (A6, A5), (A5, As) の場合がある. よって, (ア)の確率)= 6 1 36 6 (イ)のとき,他の2頂点について, (A3, A5), (A5, As) の場合があ 対称性から1つの頂点は固定 して, 残り 2頂点の選び方を考 えればよい。 三角形の形で分類しておく. がこの検査 って ((イ)の確率)= 2 36 == 1 18 (ウ)のとき,他の2頂点について, (A2, As), (A1, A2), (Az, As),

未解決 回答数: 1