学年

教科

質問の種類

数学 高校生

この問題の(3)の解説(2ページの丸で囲んでる部分がよくわからないです… 何故Xの得点は(2-5)と(8-5)ばかりなのでしょうか? 3点や4点もグラフにあるのに何故省かれているのでしょう、、 教えてください!

step2 鉄則を使う 下の表Ⅰは、20人の生徒が行った2つのゲームX,Yの得点結果をまとめたものである。 表の横軸はXの得 点を,縦軸はYの得点を表し、表中の数値は,Xの得点とYの得点の組み合わせに対応する人数を表している。 ただし,得点は0以上10以下の整数値をとり、空欄は0人であることを表している。例えば,Xの得点が 6点でYの得点が7点である生徒の人数は2である。 また,IIはXとYの得点の平均値と分散をまとめたものである。 ただし, 表の数値はすべて正確な値であり、 四捨五入されていない。 以下,小数の形で解答する場合は、指定された桁まで解答せよ。 #I 表Ⅱ (点) 10 X Y 9 1 8 7 2 232211 2 平均値 A 6 2 1 分散 4.00 7.0 B Y 5 4 1 3 2 1 0 012345 6 7 8 9 10 X (点) (1)20人のうち, Xの得点が5点の生徒はア人であり, Yの得点がXの得点以下の生徒はイ人である。 . (2)20人について, Xの得点の平均値Aはウ エ点であり,Yの得点の分散Bの値はオ である。 カキ (3)20人のうち, Xの得点が平均値 ウ エ点と異なり,かつ, Yの得点も平均値 7.0点と異なる生徒 はク人である。 20人について, Xの得点とYの得点の相関係数の値はケコサシである。 ア( ( ウ エ オ( )力( キ ク( ケ ( ) コ サ ) シ(

回答募集中 回答数: 0
数学 高校生

29番の(1)で必要十分条件を求める問題で、どちらが必要条件でどちらが十分条件か分からなくなってしまいました。考え方を教えて頂きたいです。

28 よって ここで ゆえに −(n=k+1}{n+k+1)+(n−k)(n+k) n→∞0 =-2k²+(2n²+2n+1) f(n)=-4 f(x)=x(2k² +2n² +2n+1) k²=0+22k², 1=2n+1 TA³5 k=1 −42 k²+(2n²+2n+1) (2n+1) k=1 − n(n+1)(2n+1)+(2n²+2n+1)(2n+1) lim 72-00 n³ (2) f(n) -1/(1+1/2)(2+1/2)+(2+1/2)(2+1)} =--²--1-2+2-2= 8 3 3 別解n≦x≦k, k≦x≦n と k<x<kに分けて,直線 y軸に平行な直線につ x=i (-n≦i≦n) 上にある格子点の数を求める。 さて格子点を数える。 = -n≦i≦k のとき, 格子点の数は k=-n 1+3++{2(n−k+1)−1}=(n−k+1)² = (+_____________ k<i<kのとき, 直線 x = i の本数は ←-k+1≦isk-1 各直線上の格子点の数は よって k-1-(−k+1)+1=2k-1 = I=gb S=b 2(n-k+1)-1=2n-2k+1 Nk=2(n-k+1)+(2n-2k+1)(2k-1) =-2k²+(2n²+2n+1) 総合を複素数とする。 自然数nに対し、2” の実部と虚部をそれぞれxとyとして、2つの数列 29 {Xn},{yn}を考える。 つまり, z=xn+iy" (iは虚数単位) を満たしている。 (1) 複素数zが正の実数と実数0を用いて z=r (cos0+isine) の形で与えられたとき、 数列{x},{ym} がともに0に収束するための必要十分条件を求めよ。 1+√3 10 = n(n+1)(2n+1) のとき、無限級数Σx とΣy はともに収束し, それぞれの和は n=1 71=1 x=2y=イロである。 (1) z=r (cos0+isin0) [r>0] のとき HINT (1) x²+y² = (r")2 となることに注目し, まず必要条件を求める。 (2) z を等比数列の和の公式を利用した式で表してみる。 ORAN z"=r" (cosnotisinn()=r"cosn0 +ir” sinne Xn=r" cosnd, yn=r"sinno よって ゆえに x2+yn²=(r")' (cos2nd+sin'nb)=(x2)" limxn=limyn=0のとき lim(x²+ym²)=0 〔類 慶応大] 本冊 例題 13,102 ←ド・モアブルの定理。 ←=xn+iy 0sr²<1 よって に0<r<1のとき 1-400 0<r<1より, lim|rl"=0であるから ゆえに 0≦|x|=||"|cos nolsrp. よって 0≦ly|=|||sinner| また 以上から、求める必要十分条件は +③iのとき 10 lim|x|=lim|y|= 0 71-00 ゆえに 1110 Z ここで1-2 lim xnn-000 ZR= ここで k=1 z(1-2)= 1-² よって 1- 1+√3 i 10 1+√3 i 10 k=1 84 3+5√3 i 42 (1+√3i)(9+√3 i) (9-√3i)(9+√3 i) 6+10√3i_3+5√3i 2x= k=1 1-2 (1-(xn+iyn)) 1+√3 i 9-√3i 11-0 0721 0<r<1 n=1] -(1-Xn-iyn) 2R= = 1/2 (3(1-xn) +5√3 yn+(5√/3 (1–xn)—3yn}i) z*= (xn+iyn)= xx+iZyn k=1 3(1-x₂)+5√√3 yn 42 ΣXn² n=1 42 5√3 (1-xn)-3yn 42 0</1/3 <1であるから, (1) の結果より limxn=limyn = 0 „=lim 11-00 2 k=1 2 = = = = ( 1²/2 + √²³_i) = = = (cos / 1 + isin) Σyn=lim- 11-0 ←Sa<1のとき a²19 a=1のとき、 α>1のとき、18 42 ←xel Saxolxel から、 xel 0のとき 初項z. 公比zの等比 数列の初項から第 環 までの和 12-00 3 (1-x)+5√3ym_3_71 42 5√3 (1-xn)-3yn_15√/3 42 -419 ←分母の実数化。 42 14 ← 22 のもう1つの表現。 ←実部、虚部をそれぞれ 比較。 (12) 結果を利用 総合 N=1 £ =lim ży

回答募集中 回答数: 0
数学 高校生

どうやってy=9.3xのグラフを書くのですか? x=−2でy=1となる計算の仕方を教えてください。 (1)

次の関数のグラフをかけ。 また, 関数 y=3のグラフとの位置関係をいえ。 Bay ooooc (2)y=3x+1 (1) y=9.3x (3) y=3-9% 指針y=3* のグラフの平行移動・対称移動を考える。 y=f(x) のグラフに対して 解答 y=f(x-b)+α y = -f(x) (3) 底を3にする。 y=f(-x) y=-f(-x) _1) y=9・3*=32.3x=3x+2 したがって, y=9・3のグラフは, y=3のグラフをx軸方向に2だけ平行移動したもので ある。よって, そのグラフは下図 (1) -)y=3x+1=3(x-1) y=3xのグラフをx軸方向に1だけ平行移動したもの, す したがって, y=3x+1のグラフは2個 なわちy=3* のグラフを軸に関して対称移動し、更に 軸方向に1だけ平行移動したものである。 よって,そのグラフは下図 (2) x y=3-9² = − (3²) ²+3=3*3²8 y=9.3* x軸方向にか、y軸方向にだけ平行移動したもの x軸に関して y=f(x)のグラフと対称 軸に関して y=f(x)のグラフと対称 原点に関して y=f(x)のグラフと対称 したがって, y=3-9 のグラフは 3" のグラフ (*) をy軸方向に3だけ平行移動したもの, YA y=3x 9 -2 -2 234 (*)y=-3* と ラフはx軸に すなわちy=3*のグラフをx軸に関して対称移動し、更にyx軸との交点 - 3*+3=0t 軸方向に3だけ平行移動したものである。 hy よってx= よって, そのグラフは下図 (3) Zkum (2) y=3x+1 +1¹ 22 B + s ( 14 Pl Ay ly=3 13 -y=3x+1 p.260 基本事項 [1 +1 注意 (1) y=3のグ y軸方向に9倍した もある。 (3) y=3xとy=3* はy軸に関して +3 YA +3 17 13 12 0 y=3* y=3-9 +3

回答募集中 回答数: 0