学年

教科

質問の種類

数学 高校生

これは別解として成り立っていますか? 数学A青チャート、例題87です。

が成り立つことを証明 (DAAD), AC 角の大小にもち込む 2辺の和>他の1辺 中線は2倍にのばす (平行四辺形の対辺の長さ 三角形の2辺の長さの和 は他の1辺の長さより大 きい(定理8) 不等式の性質 a<d, b<e, e<f => a+b+c<d+e+f JAPAB であることを証明せよ。 齢分ABの垂直二等分線とに関してAと同じ側にあって、直線AB上にな 「1点をPとすると、AP<BPであることを証明せよ。 10U17 00000 直角三角形ABCの辺BC上に、頂点と異なる点をとると、 (辺の大小)(角の大小)が成り立つことを利用する。 APCABの代わりに<日<2APBを示す。2つの三角形△ABPとAPCに (②2) (1)と同様に, PBA <<PAB を示すことを目指すと線分PBとの交点をQ とすると、AQAB は二等辺三角形であることに注目。 CHARY 三角形の辺の長さの比較角の大小にもち込む ABCは∠C=90°の直角三角 (D) 形であるから <B<<C 2APB=&CAP+2C ⑩.②から すなわち よって ****** 2B <ZAPB AP <AB (2) 点P,Bは! に関して反対側にあるから、線分PBは と交わる。その交点をQとすると,Qは線分PB上に (2) ある (P, B とは異なる)から 2PAB> <QAB また、Qは上にあるから ****** AQ-BQ ∠QAB=∠QBA ∠QBA < ∠PAB ∠PBA << PAB AP <BP <<C-90°であるから ∠A<90°, <B<90° ****** APCの内角と角の <<B<<C<∠APBか 三角形の2辺の大小 上の例題 (2)の結果から, AABCの2 辺AB, AC の長さの大小は, 辺BCの垂直二等分線を利用して判定できることがわかる。つまり 辺BCの垂直二等分線ℓに関して,点Aが点Bと同じ側に あれば、AB<ACである。 <B <ZAPB B Q An M B 3 101 一三角形の辺と角 C

解決済み 回答数: 1
数学 高校生

154. これらの問題3問は Oの位置についての記述がないですが、 Oはグラフを書いたとしたら原点に位置する場所のことを 示しているという前提の元で 写真のようにOPの大きさを求めていいのですか?

,b) 05-01 基本例題154 三角関数の合成 00000 | 次の式をrsin (0+α) の形に変形せよ。 ただし, r0 とする。 (1) √3 cos 0-sin si (2) sin 0-cos0 解答 (1) √√3 cos 0-sin0=-sin0+√√3 cos 0 P(-1, √3)とすると 指針> asin0+bcos A の変形の手順 (右の図を参照) ① 座標平面上に点P(a,b) をとる。 ② 長さ OP(=√²+62), なす角αを定める。 ③ 1つの式にまとめる。 asin0+bcos0=√a²+ b² sin(0+a) CHART asino+ b cos0の変形(合成) 点P(a,b) をとって考える よって OP=√(-1)2+(√3)=2 線分 OP がx軸の正の向きとなす角は √3 cose-sin0=-sin0+√3cos (2) P(1,-1) とすると って (3) P(2,3) とすると $154 OP=√12+(-1)2=√2 線分 OP がx軸の正の向きとなす角は =2sin(0+²) sin0-cos0=√2 sin 0- -√2 sin(0-7) 3 √13 OP=√22+32=√13 また,線分 OP がx軸の正の向きとなす角をαとすると 2 sina= √13 cos α = 2sin0+3cos0=√13sin(0+α) 3 √13 ただし, sinα= cos a= -π 2 √13 元 (3) 2 sin 0+3 cos 0 P(a, b) P √√31 p.242 基本事項 [1] -1 1 3 0 2 N √2 √3 √13 Aai 22 y4 次の式をrsin (0+α) の形に変形せよ。 ただし, r> 0, π<α とする。 (1) coso-√3sin O (3) 4sin0+7cos 0 (2) 1/12/0 1/12sinocost 0 AX x x a AR x αを具体的に表すことがで きない場合は,左のように 表す。 aar 243 4章 27 2 三角関数の合成

回答募集中 回答数: 0