学年

教科

質問の種類

数学 高校生

数Ⅲ微分 丸で囲った sinxは単調増加であるから、という条件はどういう意味なのでしょうか? 無くてもtで置き換えてるのでできる気がするのですが…… 14番です。お願いします。

6 Check! Step Up 396 末 第6章 微分法の応用 (1)f'(x) =2me" sin(xx) +2eπCOS (πx) =2ne™x{sin(x)+cos(x)} *sin(x++) =2√2 resinx+ -1<x<1 £9,-*<**+*<z したがって、f'(x) = 0 とすると, x+4=0. π 1 より。 x=- 4'4 f(x) の増減表は次のようになる。 x -1... ..... 1 4 0 + 0 f'(x) f(x) よって 大値 ed(x=22) 極小値 -√/2e-f(x=-1/2) (2) f'(x)=1e-x+(x+1) (−2ax)e-ax2 =(-2ax2-2ax+1)e-axs f'(x) = 0 とすると, e-x2 = 0 より 2ax²-2ax+1=0 2ax2+2ax-1=0 ...... ① f(x) が極値をもつための条件は、 ①が解をもち, その 解の前後で ① の左辺の符号が変化することである. a=0 のとき, -1=0 となり不適 したがって, a=0 | 積の微分 A (e**)'=e** (xx)'= nex {sin(x)}'=cos(x)(x) 三角関数の合成 COS(x) sin(x+4)=0 -√2e- 積の微分 1 <f'(x)=0 の両辺を e-ax で 割る. 第6章 微分法の応用 映画 397 Step Up 1 <x<1/2で異なる2つの実数解をもち、その直後で(x)の 考え方> (1) f'(x) =0 が 符号が変わるようなαの値の範囲を考える. の値の範囲を求める. (2) f'(x)=0 が 0<x<πで解をもち, その前後でf'(x)の符号が変わるような (1) f(x)=2cos2x-asinx =2(1-2sin'x) -asinx =-4sin'x-asinx+2 f'(x) =0 とすると, より, -4sin x-asinx+2=0 4sinx+asinx-2=0 ...... ① f(x) が極大値と極小値をもつための条件は,①が 一覧<x< に異なる2つの実数解をもち,その解の 前後で①の左辺の符号がそれぞれ正から負,負から正に 変化することである. sinx=t とおくと, であり,①は, 4t2+at-2=0 <x<1のとき,-1<t<1 2 <x<1においてsinxは単調増加であるから ②1<<1 に異なる2つの実数解をもつとき、 f(x) が極大値と極小値をもつ. g(t)=4t+at-2 とおくと, g(0)=-2<0 より, である. g(-1)>0 かつ g (1) > 0 g(-1)=4-a-2>0より, g(1)=4+α-2>0より, a<2 a>-2 2倍角の公式 cos20=1-2sin' では調査 -1 \0 6 であるから, f(x) が極値をもつための条件は, xについ よって, -2<a<2 ての2次方程式 ①が異なる2つの実数解をもつことであ る. f'(x)≧0 重解をもつときは, または f'(x) 0 となり極値 をもたない. (2) f(x)==sinx•sinx−(a+cosx)cost sin'x sin'x ①の判別式をDとすると,0 すなわち, a²+2a>0 a<-2,0<a よって, 求めるαの値の範囲は, a<-2, 0<a t 14 (1) 関数f(x) =sin2x+acosx (-2<x<2) が極大値と極小値をもつように定数a の値の範囲を定めよ. (2)関数f(x)=+COSX (0<x<z) が極値をもつように定数a(a≠0) の値の範囲を sinx 定め,そのときの極値を求めよ. -sin'x-acosx-cos' x acosx+1 sinx f'(x)=0 とすると, acosx+1=0 ...... ① f(x) が極値をもつための条件は,① が 0<x<πに 解をもち,その前後で ① の左辺の符号が変化することで ある. COSx=t とおくと, 0<x<πのとき, -1<t<1で あり,① は, at+1=0 ・・・② 0<x<πにおいて、 COS-xは単調減少であるから ② が1<t<1に解をもつとき,f(x)が極値をもつ. α≠0 より t=-- (i) a>0 のとき 1 a -1<--<0であるから, a -2 商の微分 (分母)=sin'x>0より,分~ 子についてだけ考えればよい. a>1 <a>0より, -a <-1 a>1

回答募集中 回答数: 0
数学 高校生

点と点を結んでいる線はなんでしょうか? 書く必要がある線ですか?

素数平面 素数平面 in a=a+bi を座標平面上の点(α, b) で表したと この平面を複素数平面 または複素平面という。 複素数の実数倍 α=0 のとき 3点 0, α, β が一直線上にある 2 共役な複素数 1. 対称 3. 複素数の加法, 減法 点の平行移動や平行四辺形の頂点として表される。 ⇔ β=ka となる実数kがある 点α と実軸に関して対称な点は 点αと原点に関して対称な点は 点αと虚軸に関して対称な点は 2. 実数 純虚数 5.08 3. 和・差・積・商 a+β=a+B, ⇔a=d αが実数 αが純虚数 α = -α, a≠0 3 絶対値 複素数 α=a+bi に対して 1. 定義 |a|=|a+bil=√²+62 3. 2点α, β間の距離は α -α a a a-8=a-B₁ aß=aß. (2) - B |B-al -a 154 次の点を複素数平面上に記せ。 STEPA O a=a+bi A(a) a=-a+bi a 16 2.性質|a|=aa, |a|=|-2|=|a| 実物 a=a+bi ax ✓ 158 a=-a-bi-baa-bi ✓ 159 A(2-3i), B(−3+i), C(−2−2i), D(3), E(-4i) △*155 (1) α=a+2i, β=6-4i とする。 3 点 0, α, βが一直線上にあるとき, 実数 aの値を求めよ。 (2) α=3-2i,β=b+6i, y=5+ci とする。 4点 0, α, β,yが一直線上に あるとき, 実数 b,cの値を求めよ。 37 □ 156 α=3+i, β=2-2i であるとき、 次の複素数を表す点を図示せよ。 (1) α+β (2)α-β (3) 2a+β (4) α-2β (5) -2a+β * 157 次の複素数を表す点と実軸, 原点, 虚軸に関して対称な点の表す複素数をそ れぞれ求めよ。 *(1) 1+i (2) -3+4i (3) -√2-3i *(4) 4-√3i *16 16

回答募集中 回答数: 0