学年

教科

質問の種類

数学 高校生

英作文なんですけど、添削をお願いしたいです🙌🏻学校の先生にしてもらう時間がなくて明日テストなんです!お願いします🙇🏻‍♀️💭(字汚くてすいません)

次のTopic について、自分の意見とその理由を50 語程度の英文で書きなさい。 Topic :If you had an "Anywhere Door", where would you go? Topic 2: If you could travel in a time machine, when would you go to? Topic 3: Do you think more people will have pets in the future? 55 ☺ If I could travel in a time machine, I want to go to Heian Period. I have two reasons. First. I can watch Helankya. Sei Shenagon and Murasaki Shikibu. I like their essay. so I want to talk with them. For this reason. I want to go to Helan Period 54歳 0 If I had an Second. I want to meet "Anywhere Door", I want to go to Shizuoka. I have two reasons. First I want to eat Local gourment food like Fuzimiya-yakicabo, Second I want to watch the volley match of Hamamatushugakusha high school. But I haven't enough many to ge So I want to go to Shizuoka with anywhere door. ☺ I think more people will have pets in the future. It's because having And having pets make children's pets is good for education. emotions enriching. Also, pet helps relieve children's loneliness. So I think more people will have pete in the future Check! □自分の意見や考えを最初に述べているか。 □その理由を述べているか 理由に対する具体的な事例・事実を述べているか ( つなぎ言葉を効果的に使っているか。 □単語・文法の誤りはないか。 ) words

解決済み 回答数: 1
数学 高校生

図形についての問題です。 この(2)の解説がよく分からないです。 ・なぜ分母が最大の時分数の値が最大になるのですか? ・2sinθが分母なのに2は考えず、sinθの範囲だけ求め るのはなぜですか? ・sinθが1の時なぜ最小になるのですか? 質問多くてすみません。全... 続きを読む

[2] 鋭角三角形 ABCの辺BC上(両端を除く)に点Pがある。△ABP の外接円の半径 と△ACP の外接円の半径の和が最小となるような点Pはどの位置にあるかを考察する。 ( ・考察・ it st BO BC=α, CA = b, AB = c とし, △ABP の外接円の半径をR1, △ACP の外接円の半 (003 ART 34 U DAN T O T COA COX (2) | 径をRとする。 ∠BPA = 0 とし, 正弦定理により R1 をc, sine を用いて表すと, R1= MOR (1) である。 また,同様に R2 をb, sin 0 を用いて表すと, R2 = (イ) 同様にRob, sing を用いており sin Q を用いて表すと, SKOCZOTOSHOXFCO $300 (イ) を正しくうめよ。 prox 301 1 (2) 点Pの位置は,考察で用いた 0 の値によって定まる。 △ABP の外接円の半径と △ACP の外接円の半径の和 R1+R2 が最小となるような0の値, および R1+R2 の最小 値を求める過程とともに解答欄に記述せよ。 ただし, R1+R2 の最小値は考察で用いた *>501312AD b,c を用いて表せ。 (配点 10) > BAN R2=(1) である。 JA

解決済み 回答数: 1
数学 高校生

1枚目の11番のところのtheyと21番のthisはそれぞれ何を示しているのか教えてください。 2枚目の17番のweを示しているのは誰ですか。 3枚目の6番のsheはだれを示しているのか。 至急お願いします

Date 1. English as a ( 19 2 ) to one ( English )( 3 native English speakers ( 4 only a ( 5 English is now used more often/ 6 between ( )-(. most native speakers /tadé// )( .)/ ) of the world's English speakers. // ) speakers / 11 they 12 The English( 13 is called English as a lingua franca / 14 or ELF.// LESSON 4 than between ( 8 For example,/ 9 when business people from Japan, China, and Korea / 10 have a meeting,/ ) speakers. // 15 In using ELF,/ 16 you should speak clearly and simply.// 17 You should also ( ) on ( 18 For example, / ), / ) their business in English. // Xin this ( 20|( 21 This is not a problem/ 22 because we can understand both.// )(ELF) 23 However, / 24 if you say /dadér/ or /tatér/, / 25 no one will understand what you say.// 26 This example shows us/ ) some usually say /tadáw/// →このような例とは? 27 that consonants are more important than ( today as DL Part 3 どのような状況? ). // ) 11 ネ法 Japanese 国際共通語としての英語(ELF) ある概算によると 英語母語話者[ネイティブスピーカー] は 占めるにすぎません 世界の英語話者のたった4分の1を 今では、よく英語が使われています 非母語話者[非ネイティブスピーカー] 間 のほうが 母語話者 [ネイティブスピーカー] 間よりも たとえば 日本,中国, 韓国の実業家が 会議をするとき 彼らは英語で彼らのビジネスについて話 し合います このような状況で話される英語は 国際共通語としての英語と呼ばれます またはELFと ELFを使うときは はっきりと, 簡潔に話すべきです また、子音にも注意を集中させるべきで す たとえば たいていの母語話者[ネイティブスピーカー] は todayを/tadér/ と発音します 一方で、 普段は/tadá / と言う人もいま す これは問題ではありません 私たちは両方とも理解できるので しかしながら もし/dadér/か/tatér/ と言えば あなたの言うことはだれもわからないで しょう この例は、私たちに示しています 重要であることを

未解決 回答数: 1
数学 高校生

これの答えを教えてください! 解答がなくて答え合わせができず、困ってます😭

196-197 ません) らない) つくるこ をすべき とつくる 続けら -199 だ) た) ―には の意 Knot 0 B30 XOT XEXERCISES ES 不定詞① (名詞用法) ⑤ [ ]内の意味に合うように、不定詞を使って英文を完成させなさい。 (1) Ann wants to know a teacher. [教師になる方法] (2) I know (3) Sam didn't know (4) I haven't decided that book. [どこで買えばいいか] [何を言えばいいのか lood to of DoverIO for Canada yet. [いつ出発すべきか] HOUSTI RISTONSSON 0 ⑥6 日本語に合うように( (1) 大切なのは、だれにもうそをつかないことだ。 The important thing (to /is/lie / not) to anyone. )内の語句を並べかえ, 全文を書きなさい。 16 SORTIR D aslood to fol a basi PASA d'evil of a to guidool a'ade z (2) 彼女があなたに怒っているのは当然だ。 It is (for / natural / you / angry with / be / to / her). om gloro base on avail I as 宝不さ玉会 3 om eqlar barst on (3) 妹が夜ふかしするのはめずらしいと思う。 (2) I think (unusual/my sister / stay / to / it's / for) upl late. 100 Lat of yu tead sillal terW HIS GJELDED MIROS PROSVITU TOGE (4) 私の長所は,決して落ちこみすぎないことだ。1000 ( My good point (be / to / depressed / is / too / never) of a bit uovo woH C (1) CONST 8 7 与えられた状況に合うように ( )内の語句を並べかえ, 全文を書きなさい。 ただし, 不要な語 句が1つずつ含まれています。 CD (1) 状況 医師から食生活を改めるよう言われたので、私は…。 I (not/ eating / eat / decided / a lot of /to/ sweets). 07-11-not eating/cated 13/2014 bro bothate 7 of advice. BORARSTO ENNUJAS LEBET CAS (2) 状況 ルーシーは最近悩みがあり、だれかに相談したいのですが・・・。 he of htpal chu Lucy doesn't (ask/know/who / for /to/ bawala a no ixats qode of CUS LOT- (3) 状況 最近, 地震が多いことを受け, ホームルームで先生がひと言。 We had better (what / case/ do / consider / to / of / in / doing) emergency. JON TOTO + ton en 08) a 16 red blor. I 8 [ ]内の語を参考にして~…に自由に語句を入れ, オリジナルの英文をつくりなさい。 れ、オリジナ 28-1-571-7 CD (1) 私が~することは簡単だ。 [easy / to ] (2)~(人)は私に….する方法を教えてくれた。[teach] 51

回答募集中 回答数: 0
数学 高校生

①−②×2の途中式を教えてください!! あとなんでaの2乗の項を消去できるんですか?

の確認をせ D> 重要 例題 102 2次方程式の共通解 2つの2次方程式2x2+kx+4=0, x2+x+k=0がただ1つの共通の実数解をも つように定数kの値を定め、その共通解を求めよ。基本97 次解答 参照)。 からげ 指針 2つの方程式に共通 な解の問題であるから, 一方の方程式の解を求めることができ たら,その解を他方に代入することによって、 定数の値を求めることができる。 しか し、この例題の方程式ではうまくいかない。 このような共通解の問題では, 次の解法 が一般的である。 2つの方程式の共通解を x =α とおいて, それぞれの方程式に代入すると 2a²+ka+4=0 ...... ①, a2+α+k=0.② これを αkについての連立方程式とみて解く。あく ま ② から導かれる k = -²-α を ① に代入 (kを消去) してもよいが, 3次方程式と なって数学Ⅰの範囲では解けない。 この問題では,最高次の項であるの項を消去す ることを考える。 なお, 共通の「実数解」 という問題の条件に注意。 CHART 方程式の共通解 共通解をx=α とおく 共通解を x=α とおいて, 方程式にそれぞれ代入すると 2a²+ka+4=0...... ①, (x) a²+α+k=0...... ② ①②×2 から (k-2)a+4-2k=0 ゆえに (k-2)(a-2)=0 よって k=2 または α=2 [1] k=2のとき <α² の項を消去。 この考 1次方程式 を加減法で解くことに似 ている。 0=A++ S 2つの方程式はともにx2+x+2=0となり, この方程式 数学1の範囲では, の判別式をDとすると D=12-4・1・2=-7 x2+x+2=0の解を求め ることはできない。 D<0であるから,この方程式は実数解をもたない。 ゆえに、2つの方程式は共通の実数解をもたない。 (2) [2] α=2のとき ② から 22+2+k=0 よって k=-6α=2を①に代入しても よい。 このとき2つの方程式は2x2-6x+4=0, x2+x-6=0 すなわち2(x-1)(x-2)=0, (x-2)(x+3)=0 とな り,解はそれぞれ x=1, 2; x=2, -3 よって、2つの方程式はただ1つの共通の実数解x=2 SOOS LIT SUND 171 以上から =-6,共通解はx=2 注意上の解答では、共通解x=αをもつと仮定してやkの値を求めているから, 求めた値に対して, 実際に共通解をもつか, または問題の条件を満たすかど うかを確認しなければならない。 がただ1つの実数を 3 12次方程式

解決済み 回答数: 1