学年

教科

質問の種類

数学 高校生

これの(2)のr≠1の時のRの因数分解の道筋教えてください🙇‍♀️

430 基本 13 等比数列の和 (1) (1)等比数列 α 302 90°, し, 0 とする。 10000 ・の初項から第n項までの和Sを求めよ。 ただ (2) 初項 5. 公比の等比数列の第2項から第4項までの和が30であると 実数の値を求めよ。 指針等比数列の和 [1] キ1のとき S= a(-1) r-1 →r1, r=1で, 公式 [1], [2] を使い分ける。 p.427 基本事項 重要 [2] r=1のとき (1)初項α、公比3 の等比数列の和→3a1, 3a=1で使い分ける。 (2)第2項5r を初項とみて, 和をの式で表す。 CHART 等比数列の和 キ1かr=1に注意 (1)初項 α,公比 3a, 項数nの等比数列の和であるから < (公比) = 3a2 a{(3a)"-1} 1 解答 [1] 341 すなわちαキー 3 のとき Sn= [2] 3a=1 すなわち a= 1/12 のとき Sn=na= -n 3a-1 1 3 =3a 公比3aが1のとき a でないときで場合分け 基本 初項から ついて、 初 針 (2)初項 5,公比rの等比数列で,第2項から第4項まで 初項5,公比から の和は、初項 5, 公比r, 項数3の等比数列の和と考え られる。 もとの数列の第2項から第4項までの和が-30 であるから [1] r≠1 のとき 51(3-1)=-30 r-1 整理して r(r2+r+1)=-6 すなわち +re+r+6=0 因数分解して (r+2)(re-r+3)=0 rは実数であるから r=-2 [2] r=1のとき 第2項から第4項までの和は3.5=15 となり,不適。 r=-2 以上から 注意 等比数列について, 一般項と和の公式のの指数は異なる。 a2=5r, as=5r2, =53 よって,和を 5 +52 +53 としても よい。 473-1 =(-1)(r2+r+1) <1 11 6-2 -22-6 1-13 0 x²-r+3=0は実数解 もたない。 a2=α3=a=5 一般項 an=ar 和 Sn= a(r”-1) r-1 rの指数はn の指数はn-1

解決済み 回答数: 1
数学 高校生

ベクトルについてです。なぜ線分上に乗ったらベクトルが全て外れるのですか?

求めよ。 する。 せ ヘOF を求め、 171 ると を満たして (1) P40A OB (2)△ABCの面積を求めよ。 19 (高知) において、 AB-5, BC 7, CA-3 とする。このときの であるので AB AC である。 外接円の中心をPとする。このと (1)とのなす角を0 (0°SO 180% とす 0.8=10 || | co304×3 × co30 =12cos0 AB+RACTE, MO, - (3) AQAP (数) とすると 解答編 315 180°であるから よって -1≤ cos 0 ≤1 -12 12cos 0 12 -12-12 Qは対角線上にあるから すなわち したがって,aの最大値は 12. 最小値は12 これを解いて ゆえに AQ=+1+5 したがって BQ:QF=5:4 5+4 20B) 173 針 a-26-la-4a 6+462-10 =4-4a・1+4×325247. より1212であるから 52-4x12 52-4a b≤52-4x(-12) 4-26≤1000 すなわち 2520であるから 2≤a-20 ≤10 よって、a-26の最大値は10, 最小値は2 172 正六角形の3本の対角 AO-20 JA B 6 1 0 F AD, BE, CFの交点を 0とする。 1) AC=AB+BCO NO B =AB+ AO =a+(a+b) =2a+b AD=2AO=24+26 点Hは頂点Aから辺BCに下ろした垂線上に ある。これが△ABCの垂心であることを証明 するには、 BHICA, CHIAB であることを 示す。 OA=a, OB=b. DC=c とする。 点Oは△ABCの外心で あるから a-b-cA 点Mは辺BCの中点であ B P/ 'E MNC るから OM= b+c 1-s D OM⊥BC であるから 2. OM/AH 学 AE=AF+FE=AF+A+(a+b) =a+26 ② CP:PE=s:(1-s), DP:PF=t: (1-f) と すると AP= (1-s) AC+ sAE =(1-s) (2a+b)+s(a+26) =(2-s)a+(1+s)b AP= (1-4)AD+LAF ....... ① ゆえに AH=20M =b+c よって したがって 問題 OH=OA +AH = a+b+c BH-OH-OB &T0<; J<t =(a+b+c)-b CH=OH-OC ①,②から =(1-1)(2a+26)+1b =(2-21)a+(2-1)b (2-s)a+(1+s)b=(2-21)a+(2-1)b 0, 0, aは平行でないから 2-s=2-2t,1+s = 2-t これを解いて 3/13 S= よって AP = √ √²+10 =(a+b+c)- =a+b よって BH.CA=(a+c)(-2) CH.AB=(a+b)(-a) =-=0 BH = 0, CA ≠0, CH ≠ 0, AB ¥0 であるから ゆえに BHICA, CHLAB BHICA, CH⊥AB したがって, 点Hは△ABCの垂心である。 22

解決済み 回答数: 1