学年

教科

質問の種類

数学 高校生

白チャートの重心の問題です! (2)がわかりません!分かりやすく解説お願いしたいです!

1 & the △ABCの重心をG, 直線AG, BG と辺BC, AC の交点をそれぞれD, E とする。また, 点Eを通り BC に平行な直線と直線AD の交点をFとする。 AD=aとおくとき,線分 AG, FG の長さをα を用いて表せ。 (2) 面積比 △GBD : △ABC を求めよ。 CHARI GUIDEMOC 三角形の重心 2:1の比辺の中点の活用く (1)(後半) 平行線と線分の比の関係により AF:FD を求める。 E は辺 AC の中 点であることに注意。 (2) △ABDと△ADC, △ABG と AGBD に分けると, それぞれ高さは共通で等し いから、面積比は底辺の長さの比に等しいことを利用する。 解答 (1) G は △ABC の重心であるから AG: GD=2:1 AG =- -AD=- a 2 2 よって 2+1 3RD DE CASA また,Eは辺ACの中点であり, FE//DCであるから AF : FD=AE: EC=1:1 A よって ゆえに AF-12/AD-124 FG=AG-AF = すると = 1/30-120- よって したがって a ²-0-1-a=—a (2) 点Dは辺BCの中点であるから AABC=2AABD また. AD: GD=3:1 であるから AABD=3AGBD AABC=6AGBD $ROS AGBD:AABC=1:6 B ① B Bh' 2/F D G A ID E1108 GSGRO084 (1) 中 ign/58 h A = CRO 080平行線と線分の比の関係 8308 内高さがんで共通 HAABC: AABD 3章 C 三角形の辺の比,外心・内心・重 ←高さがん で共通 SAABD: AGBD =BC : BD IL =AD: GD

回答募集中 回答数: 0
数学 高校生

(2)の問題で解説に1.2.3のそれぞれが、部分集合に属するか、属しないかの2通りある。と書かれていますがよくわかりません! あと重複順列についても理解が出来なかったので教えていただきたいです!

288 4/5 重複順列 基礎例題 14 (1) 1,2,3,4,5の5種類の数字を用いて2桁の整数はいくつ作ることが できるか。ただし、同じ数字を繰り返し用いてもよい。 (2) 集合 {1,2,3}の部分集合の個数を求めよ。 CHARL & GUIDE 重複順列n™ の円 異なるn個から重複を許して個取って並べる (1) 2桁の整数を□□として, 「2つの 口の中に, 5個の数字から重複を許し て2個並べる」と考える。 2個目 (2) 1,2,3のそれぞれが, 部分集合に 属するか, 属さないかの2通りある。 SOS 1個目 Lecture 重複順列の考え方 ↑ ↑ n通り × n通り X ...... Xn通り 通り の法則 ■解答 (1) 十の位, 一の位の数の選び方は、 それぞれ 1, 2, 3, 4,5 (1) 十の位 一の位 5通り よって, 求める 2 桁の整数は 5225 (個) (2) 要素 1,2,3のそれぞれについて, 部分集合の要素に なるか, ならないかの2通りがある。 よって, 部分集合の個数は 23=8(個) 注意 重複順列n” の式に直接当てはめようとすると, 例えば (1) は, 52でなく25 のように, n とrの値を間違えてし まうミスが起こりがちである。 慣れないうちは、右の ように、各部分は何通りかを図をかいて考えるとよ い。 5通り 5通り (2) 部分集合の要素になるときを ○, ならないときを×で表すと 1 2 3 × 個目 X -X O {1,2,3} {1,2} {1,3} {1} {2,3} {2} {3}

回答募集中 回答数: 0
数学 高校生

求める果物の買い方を求める式で9はどこから出てきましたか?

題 14 完大] 128 重複組合せ かきなし,もも, びわの4種類の果物が店頭にたくさんある。 6個の果物を買 うとき、何通りの買い方があるか。 ただし, 含まれない果物があってもよいも のとする。 CHART GUIDE 重複を許して作る組合せ ○と仕切りの順列と考える SUS 4種類の果物から、6個を買うというだけで, それぞれの果物の個数に指定がない。 この ような場合は、次のように考える。 買物かごを用意し, その中に3個の仕切り ( で表す) を入れ, 4つの部分に分ける。 その 4つの部分に,順にかき, なし,もも, びわ を計6個入れる。 このとき、果物を○で表すと、例えば もも2|びわ 1 もも0 3 〇〇一〇一〇〇|〇 はかき2|なし1 〇一〇〇|| 〇〇〇 はかき1 | なし2 を表す。このように,果物の買い方は6個の ○ と3個の|の並べ方の総数に対応するから, 同じものを含む順列を利用して求める。 回答 例えば,かきを1個, なしを1個, ももを3個, びわを1個買 うことを6個 と3個の仕切りを用いて 19 それぞれの果物をか で表すと, 2, 2, 1 は COTO | 000 1 0 のように表すとする。 このように考えると, 果物の買い方の総数は, 6個の○と3 個の仕切り | を1列に並べる順列の総数に等しい。 9! =84 (通り) よって 求める果物の買い方の総数は 6!3! thy Lecture 重複組合せ 異なるn個のものから重複を許して個取って作る組合せの総数は,例題の解答と同様に考えて が (n-1) 個 〇が個あるとき,それらを1列に並べる順列 の総数に等しいから、その数は n-1+rC, である。 このような組合せを重複組合せといい、その総数を,H, で表す。 すなわち nH₂=n+r-1Cr (r>n><& £W) 上の例題では、異なる4種類の果物から重複を許して6個の果物を取り出す組合せの総数を考え 4H6=4+6-1C6=9C6=9C3= ているから、その総数は 9・8・7 -=84 (通り) 3・2・1 1, な 〇一〇〇一〇 0, 3, 1, 2 1100010100 で表される。 同じものを含む順列 1

回答募集中 回答数: 0
数学 高校生

解説をみてもわからないので教えてください。

|発 例題 展 23 順列のn番目 SHUDAI の6文字を全部使ってできる文字列 (順列) をアルファベット順の辞書 式に並べる。 ただし, ADHISU を1番目, ADHIUSを2番目, USIHDA を最後の文字列とする。 (1) 110 番目の文字列は何か。 CHART & GUIDE JACO A. (2) 文字列 SHUDAI は何番目か。 ())a+(a)x+(A)n =(QUSUA コー 順列の番目 Tattor 順に並べ, タイプ別に分類して絞り込み (1) A □□□の形のものは 5!=120 (個) 110×120 であるから、初めの文字はAと決まる。 AD□□□□の形のものは 4!= 24 (個) であるから,以下同様にAH□□□□ AI□□□□ と絞り込んでいく。 (2) Sで始まる文字列は SA□□□□,SD□□□□, SH□□□□, さらに SH で始まる文字列は SHA□□□, SHD □□□, SHI□□□, SHU□□□, ・・と絞り込んでいく。 解答 6文字のアルファベット順は A, D, H, I, S, Uである。 (1) A□□□□□の形の文字列は 5!=5・4・3・2・1=120(個) AD□□□□,AH□□□□,AI□□□□, AS□□□□の 形の文字列は 4!×4=96(個) ある。 ゆえに, AUD□□□, AUH□□の形の文字列までは 96+3!×2=108 (個) ある。 よって,109番目は AUIDHS, 110番目は AUIDSHAUD... (2) A□□□□□, D□□ 10, HOO000, の形の文字列は 5! ×4=480 (個) 次に, SA□□□□, SD□□□□の形の文字列は 4!×2=48(個) また, SHA□□□, SHD 000, SHI□□□の形の文字列は 3!×3=18(個) さらに, SHUA□□の形の文字列は 2!=2(個) よって, SHUDAI は 480 +48 + 18 +2+1=549 (番目) 広島修道大 4999 AD... AH・・・ AI... AS・・・ 発 アルファベットの順に整 理し、 個数を数えていく。 ・4! ×4=96(個) 展 3!×2=12 (個) AUH... AUIDHS109番目 AUIDSH ←答 ◆タイプ別に分類して,個 数を積み上げていく。 (2) (3 CH

回答募集中 回答数: 0
数学 高校生

(2)が解説を見てもわからないので教えてください。

標 例題 準 20 順序が定まった順列 10個の文字, N, A, G, A, R, A, G, A, W, A を左から右へ横1列に並 べる。 (1) 「NAGARA」 という連続した 6文字が現れるような並べ方は全部で何通り あるか。 (2) N,R,Wの3文字が,この順に現れるような並べ方は全部で何通りある か。ただし,N,R, Wが連続しない場合も含める。 [岐阜大] CHART & GUIDE 順序が定まった順列 順序が定まったものは同じとみる (1) 「NAGARA」をひとまとめにして1文字と考え,G,A,W,A と合わせた5文字 の並べ方を考える。 (2) N,R, Wがこの順に現れるということは N,R, W の並び方は考えなくてよい ということである。 よって, N, R, W を同じ□として,□3個とA5個 G2 個の並 び方を考え、□にN, R, W の順に入れると考える。 5! 2! (1) 「NAGARA」 をXで表すと, X, G, A, W, A の5個の「NAGARA」をひとま とめにして1文字とみる。 並べ方を考えればよい。 A が2個あるから = 60 (通り) = <<< 基本例題 19 000 10! 3!5!2! = ( 2 ) □3個,5個, G2個を1列に並べ、3個の□に左から例えば, 順にN, R, W を入れると考えればよい。 よって, 求める並べ方の総数は 10・9・8・7・6・5! 3・2・1×2.1×5! 10・9・8・7・6 3・2・1×2・1 =2520(通り) 土 ◆同じものを含む順列 1章 □AAGAGA□A に対し、左の□から順 に N, R, W を入れる とNAAGRAGAWA 分母にある3!, 5!, 2! のうち1番大きいのは 5! であるから, 5! で約 組 合 せ 次のような並べ方は何通りある

未解決 回答数: 1
数学 高校生

(2)の問題を解説よりもうちょっと簡単な感じで解説してください。

306 標 例題 準 120 を含む数字の順列 5個の数字 0 1,2,3, 4 から異なる3個の数字を取って3桁の整数を作る。 き,次のような数はいくつできるか。 (1) 整数 CHART & GUIDE (2)偶数 0 を含む数字の順列 最高位の数は0でないことに注意 作りたい数に関係する位の数から決める (1) 百の位に 0 は使えないから1□□か2□□か3□□か4□□である。 (2) 一の位の数が [1] 0 の場合 [2]0でない場合に分ける。 解答 (1) 百の位の数は0以外の数字であるから4通り そのどの場合に対しても十の位, 一の位には残りの4個の数 字から2個を取って並べるから, その並べ方は よって,積の法則から 4P2通り (2) 一の位の数が0かどうかで場合分けをする。 したがって 4×4P2=4×4・3=48(個) [1] 一の位が0のとき 百の位、十の位には, 0 を除いた4個の数字から2個を取 って並べるから, その並べ方は P2=12 (通り) [2] 一の位が0でないとき 一の位は2か4であるから, その選び方は 百の位の数は一の位の数と0を除いた 十の位の数は残りの 3通り よって, 積の法則から 2×3×3=18(個) [1], [2] は同時には起こらないから 12+18=30 (個) 2通り 3通り 十の位一の他 百の位 1か2か3か4 ト [1] 百の位 十の位の位 基 例題 本 13 0でない 10 [2] 百の位 十の位 一の位 ◆ ( A である ) (1) 異な CHART 2か (2) 異な GUIDE (1) 円形 (2) (1) = 和の法則 [別解] 3桁の整数は, (1) から全部で48個ある。 このうち3偶数の個数を求めるだ 桁の奇数の個数を調べる。 に,偶数でない、すな ち奇数の個数を考える 一の位の数は1か3であるから, その選び方は 2通り 百の位の数は,一の位の数と0を除いた 3通り 十の位の数は残りの 3通り よって, 積の法則から3桁の奇数は全部で 2×3×3=18(個) 48-18=30 (個) 解答 (1) (5 (2) 腕 (全体)(Aでない よっ 通り Le 例えば, 円順列 この6 この6 それぞ ず順列

回答募集中 回答数: 0