数学
高校生

(2)の問題を解説よりもうちょっと簡単な感じで解説してください。

306 標 例題 準 120 を含む数字の順列 5個の数字 0 1,2,3, 4 から異なる3個の数字を取って3桁の整数を作る。 き,次のような数はいくつできるか。 (1) 整数 CHART & GUIDE (2)偶数 0 を含む数字の順列 最高位の数は0でないことに注意 作りたい数に関係する位の数から決める (1) 百の位に 0 は使えないから1□□か2□□か3□□か4□□である。 (2) 一の位の数が [1] 0 の場合 [2]0でない場合に分ける。 解答 (1) 百の位の数は0以外の数字であるから4通り そのどの場合に対しても十の位, 一の位には残りの4個の数 字から2個を取って並べるから, その並べ方は よって,積の法則から 4P2通り (2) 一の位の数が0かどうかで場合分けをする。 したがって 4×4P2=4×4・3=48(個) [1] 一の位が0のとき 百の位、十の位には, 0 を除いた4個の数字から2個を取 って並べるから, その並べ方は P2=12 (通り) [2] 一の位が0でないとき 一の位は2か4であるから, その選び方は 百の位の数は一の位の数と0を除いた 十の位の数は残りの 3通り よって, 積の法則から 2×3×3=18(個) [1], [2] は同時には起こらないから 12+18=30 (個) 2通り 3通り 十の位一の他 百の位 1か2か3か4 ト [1] 百の位 十の位の位 基 例題 本 13 0でない 10 [2] 百の位 十の位 一の位 ◆ ( A である ) (1) 異な CHART 2か (2) 異な GUIDE (1) 円形 (2) (1) = 和の法則 [別解] 3桁の整数は, (1) から全部で48個ある。 このうち3偶数の個数を求めるだ 桁の奇数の個数を調べる。 に,偶数でない、すな ち奇数の個数を考える 一の位の数は1か3であるから, その選び方は 2通り 百の位の数は,一の位の数と0を除いた 3通り 十の位の数は残りの 3通り よって, 積の法則から3桁の奇数は全部で 2×3×3=18(個) 48-18=30 (個) 解答 (1) (5 (2) 腕 (全体)(Aでない よっ 通り Le 例えば, 円順列 この6 この6 それぞ ず順列

回答

まだ回答がありません。

疑問は解決しましたか?