学年

教科

質問の種類

数学 高校生

このまるで囲ってる2・5って何を意味するんですか? 問題は2枚目の⑶です

直線lと円 K: x+y-8x-6y=0 .... ② B の交点A,Bのx座標は,①,②より,yを 消去して得られる方程式 00 x²+(x+5)-8x-6(-1 1 x + 25)=0 の実数解である。これを解くと 3 9x2+(-4x+25)-72x-18(-4x+25)=0 x-8x+7=0 (x-1)(x-7)=0 x=1,7 条件より, 点Aのx座標がx=1,点Bのx座標が x=7 であるから, ①より 4y-3=- 1/(x-4)を展開 せずにそのまま円 K の方程式 (x-4)+(y-3)"=52 に代入 (x-4)2+{-1/(x-1)}= (x-4)²=9 x-4±3 A (1, 7), B(7, -1) y = -. 4 25 x+ 3 A(1, 7), B(7, -1) x=1,7 と計算してもよい。 完答への 道のり 直線OCの傾きから、直線の傾きを求めることができた。 直線lの方程式を求めることができた。 直線 l と円 K の方程式を連立させて、2交点 A,Bのx座標を求める 2次方程式を立てることがで ① 2 交点 A, B の座標を求めることができた。 (3) 点Dは第1象限にあるから, 点Dの座 標は (s, t) (s> 0, t > 0) とおける。 AV △ABD は正三角形であるから AD'=BD=AB2 AD=BD2 より (s-1)+(t-7)=(5-7)+(t+1)2 12s-16t=0 3 t= -s AD2 = AB2 より (s-1)+(-7)=(2-5)2) s2 +t2-2s-14t-50=0 ③④に代入して ③ ? s2+(21s)-2s-14・4/4s-50= 0 s2-8s-32=0 A(1, 7) K \C(4,3) <B (7, -1)+ 2点間の距離 2点(x1,y1)(x2,y2)の間の √(x2-x1)+(y2-yl) 線分ABの長さは円Kの 等しい。 6.8 |16s2+9s2-32s-168s-800 25s2-200s-800 = 0

解決済み 回答数: 2
数学 高校生

なぜPF:PF'=FQ:F'Qだと、点Pにおける接戦が角FPF'の外角を2等分するということが分かるのですか? 回答よろしくお願いします。

練習 Step Up 末広 C2-136 (414) 第6章 式と曲線 D 15 (i) k> のとき =(a²-√a²-b²x): (a²+√ a²-b²+x1) 第6章 式と曲線 Check! 練習 (415) C2-137 Step Up 米問題 ①と②の共有点はない。 よって、(i)(面)より。 共有点の個数は, √15 k<- のとき, 2個 2 15 k=-- のとき. 1個 2 15 k>-- のとき, 個 2 C2.65 =1 (1) (460)焦点をF.F' とする.楕円上の点P (x,y)におけ する。 ある接線は FPF' の外角を2等分することを証明せよ. ただし, 0<x<a, yi>0 と xx yy 楕円上の点P(x1,y) における接線の方程式は, ......① a² b² =1 y=0 とおくと, x0より。 a² x= x₁ つまり、接線とx軸との交点をQ とすると,0 (2) 双曲線 61 (a>060) の焦点をF,F' とする. 双曲線上の点P (x1,y) における接線はFPF' を2等分することを証明せよ。ただし、とす る. (1) 焦点をF(60) F' (630) とする. 点(x,y)は楕円上の点より、 a²b つまり、 よって. PF'= (va'-b-x)'+yi =(√a²-b²-x1)²+ b²x² a 351-1 0<x<aよりacoであるから, となり, a² FQ: x1 √a²-b². F'Q=a+√a²-b² FQ: F'Q=(a√a²-6 x X1 =(a²-√a²-6x₁); (a²+√√a²-b³·x1) ② ① ② より PF:PF'=FQF'Q が成立する. したがって, 0<x<ay>0 のとき 楕円上の点 P(x1,y) における接線は, <FPF' の外角を2等分する (2)焦点をF(v'+b20) F^(-√'+120) とする. 点P(x1, y) は双曲線上の点より. つまり. よって, (5) +24 人 b2 PF'=(va'+62-x+y^ =(va'+b^-x^2+ b = 10-2+bx+a^ b2\x x²-2√3+62x1+α -07101 A2017 160 6 a √√√a-b PF= a ここで, 0<x<a で あり 34 ary <1 P(x, y) a Ka>b>0より. √a²-b 幻 <a で a あるから, √a-62 PF=α- F(VG-6,0) a F(√a-b²,0) また, PF +PF'=2a であるから, PF'=2a-PF=a+ √a²-b² -x1 a よって, a PF: PF'-(6-10-82.): (a + √4-82.) √a²-b² a D PF= a √√a+b x-a a √√a²+b² a x-a ここで,x>a>0で a a あり、 √√a²+b² ->1であ a P(x, y) るから, PF=YQ'+6? F^(-vo +6.0) QF(vo+6.0) a また,x>a より PF'-PF=2a であるか ら PF'=PF +2a= よって a+b -x+a a 80 <a>0b>0より a a 6 B1 B2 [C C2

解決済み 回答数: 1