学年

教科

質問の種類

数学 高校生

オカキなのですが、合同でない△ABCが2つ存在しの所の意味がわかりません。 どなたかすみませんがよろしくお願いします🙇‍♀️

1 TEAB=4AB-12:0、AB'+4AB44:0 19 難易度 ★★ 1+4 4 目標解答時間 9分 90 SELECT SELECT 60 (1)△ABCにおいて,∠A=60°, AC = 4 とする。辺BCの長さに対する△ABC の形状や性質 次の(i)(ii)の場合について考えよう。 (i) BC=2√3 のとき, AB=| アムであり、△ABCはイである。 (ii) BC4のとき, AB=ウであり,△ABCは エである。 A 60° 4 イ エ ] の解答群(同じものを繰り返し選んでもよい。) B C ⑩ 正三角形 ①直角三角形 ②鈍角三角形 (iii) BC= オ のとき, 合同でない△ABCが二つ存在し, それぞれ △ABC, △ABC とす sin∠ABC= cos AB₁C= キ である。 オ については,最も適当なものを、次の①~③のうちから一つ選べ。 √7 /11 ② 15 √19 カ キ の解答群(同じものを繰り返し選んでもよい。) sin∠ABC ① -sin∠AB2C COS ∠ABC (3) - cos AB₂ C (2)△ABCにおいて, ∠A=40°, BC = 7, AC=x とする。 △ABC が存在するようにしながら、xの値を増加させると, sin B の値は ク これにより、xの値のうちで最大のものは ケ である。 また, 合同でない △ABC が二 在するxのとり得る値の範囲は, コ <x< である。 ク の解答群 増加する 変化しない ① 減少する ②増加することも減少することもある ケ コ ラ サ の解答群 (同じものを繰り返し選んでもよい。 ) 7 sin 40° ① 7sin 40° 14 sin 40° sin 40° 7 14 7 14 sin 40° sin 40° 16+AB2-2/4.AB・(土)=16 AB2+4AB=0 AB(AB+4)=0 (配点 (公式・解法集 21 22

解決済み 回答数: 2
数学 高校生

エオがわかりません。 解説で言ってる事がわかりません。 3枚目の方法で自分で解いてたのですが、計算がやばいことになってしまいこの式を解けば答えは求まるのですが共通テストなので時間がかかってしまうと思い別の方法がないかと解説を見たのですが、解説が何を言ってるのかがわからず、悩... 続きを読む

の前に、 第2問 (配点30) (ml) 10000.0 ((l) [1] ある店で商品の価格の変更を検討している。 次の売り上げ個数についての 定のもとで、できるだけ売り上げ総額が大きくなるように価格を決めたい。ただ 10000円 変更後の価格, 売り上げ個数は正の値をとる範囲で考えるものとする。また、 100 消費税は考えないものとする。 e 1502 草) 100.0 avee.0 8970.0 8180.0 sace.0 ST80.0 1201.0 208.0 81-01.0 89$1.0 asee.o ers1.0 売り上げ個数についての仮定 0008.0 は整数 kは正の定数とする。 8210 TTB6.0 01.0 8054.0 8180.0 x% 値上げすると、 売り上げ個数は kx % 減少する。 ただし、0の 2188.0. 80010 80 が 「kx % 減少する」 とは 「-k.x % 増加する」こととする。 き 「x% 値上げする」 とは, 「-x% 値下げする」 こととし, 売り上げ個数 8825 120 818.0 DAYS.O 18 T088.0 100.0 10882118 asser 02.0 0108.0 E8 CASE.O 1180.0 0008.0 8020 08810 8898.0 10-100 ENG.0 808.0 M assi.0 8000.0 0488.0 rese.0 3000000 18.0 1000 ×0.3 3000 TOON.O (1) 商品 A の現在の価格は1000円で、年間の売り上げ個数は3000個である。商 品 A の材料費が上昇しているため、値上げを考えている。すなわち、売り上げ 8001.0 9685.0 af£0.0 個数についての仮定においてx>0とする。また,過去のデータより,商品 A 2 4 ・31 13 についてはk = 1/3 であることがわかっている。 0188.0 1180.0 US88.0 72 4 Clae.0 AP Cual. ICET 8183.0 818.0 8180 ( 20000 8010 A 1300円 30× COTP.0 0000.0 -2008.0 00/3120000 BEG 3000000 ALL (200000 (1)商品 A について, 30% 値上げするとき, 売り上げ個数は アイ % 減少 ST28.0 ersa.0. 0200-24002 DANED 31200001800 BATO.0 18 8180.0 218.0 し, 売り上げ総額は ウ % 増加する。 また, 30% 値上げする以外に, 1184.0 2002.0 . 8188.0 エオ % 値上げするときも, 売り上げ総額は 2008.0 ウム % 増加する。 8008.0 1.0 Besa.o $180.0 sage.0 88 1088.0 0805.0 8818.0 8200.(0047 TO 988 1000×100 6038.0 TACT.0 1838.0 1 +3000 1002.0 ICAT.O 1938.0 商品 A の売り上げ総額が最大になるのは, asee.0 0000.0. ある。 GOOO.I カキ 値上げするときで 00 0000.1 IYOV.0 1505.0 a (数学Ⅰ 第2問は次ページに続く。)

解決済み 回答数: 1
数学 高校生

矢印を引いているところの変形がわかりません。 どなたかすみませんがよろしくお願いします🙇‍♀️

94 難易度 ★★ SELECT SELECT 目標解答時間 15分 90 60 以下の問題を解答するにあたっては,必要に応じて巻末の正規分布表を用いてもよい。 次のような科学者 A 博士のメモが見つかった。 19 ア の解答群 89 このメモでは、小数第2位の数字が3であるかはっきりしない。 仮説検定をすることで,この確率の値について考えてみよう。 (1) 実際に粒子 Rを100個取り出したところ 31個が性質Pをもっていたとする。性質Pをもつ確 率は0.33 より小さいと判断してよいかを, 片側検定を用いて, 有意水準 5% で検定する。帰無 仮説は = 0.33 であり, 対立仮説はか ア 0.33 である。 粒子Rが性質Pをもつ確率は0.3である 256 -0.33 0.67 ×0.332 201 201 0.221 X 10 R 0.83 P 0.33 ② ≠ 20,1080 0.2389 0.88 33 14 帰無仮説が正しいとする。 粒子Rを1個取り出すとき、性質をもつならば1もたないなら ば0 の値をとる確率変数を Xとする。 X,の期待値をE(X), 分散をV(X), 標準偏差を とする。 E(X) は 0. イウであり, V(X) は 0.エオである。P(1-P)=0.33×0.67=0.24 0.33 粒子 R を 100個取り出したときに性質をもつものの個数は,二項分布カに従う! 4/0.0200 カ 1の解答群 0.4. 788 (20 ⑩ B(100,0.33) ① B(100,0.31) B(10, 0.33) B (10, 0.31) 31-0.33 とみなすと, Z= は近似的に標準正規分布に従う。 粒子を100個取り出したときに性質Pをもつものの割合をYとする。 個数 100が十分大きい YA #2 070147 ク ク ]】の解答群(同じものを繰り返し選んでもよい。 (n) (0 032 0.31 ① 0.32 0.33 0 ④ 1 (5) 10 100 320 0 of 0.47 と近似すると,P(Y≦0.31)の値は ケ であり、実際に100個取り出して31個が性 02 質をもっていたとしても、帰無仮説は棄却されず、確率は0.33 より小さいと判断できない。 ケ については,最も適当なものを、次の①~④のうちから一つ選べ。 547 0.11 ① 0.27 0.33 0.47 ④ 0.66 142 (2) 粒子R を取り出す個数をnとする。 0.31n 個が性質Pをもっていたとする。 n を十分大きいとみ なしの100をnに変えて検定するとき,帰無仮説が棄却されるようなぇの値として適するものは 0142) 200, 500, 1000, 2000, 5000, 10000 のうちに全部で コ 個ある。 0.50 10,08 143 (配点 10) (公式・解法集 107 108 110

解決済み 回答数: 1
数学 高校生

教えていただきたいです( . .)"

- 分散 である。 おくと, 92 難易度★ 90 60 目標解答時間 SELECT SELECT 15分 以下の問題を解答するにあたっては,必要に応じて巻末の正規分布表を用いてもよい。 (1)ある学校で生徒会長選挙が行われた。 100人の生徒が投票し、そのうち36 人がAさんに投票した。 投票した100人のうち1人を選ぶとき,その人がAさんに投票していたら 1,投票していなければ 0の値をとる確率変数を Xとする。 ア Xの期待値は 標準偏差は エオ カキ である。 (2)2人の議員を選ぶ選挙が行われ,100万人の有権者が投票した。 この選挙ではより多い得票率 があれば確実に当選する。 開票率 1%, すなわち 10000人分が開票されたとき, Bさんに3600票 が入っていた。この開票された票を無作為に選ばれた標本とするとき, 標本比率は である。 これをBさんの得票率の母比率の推定値とする。 また, 母標準偏差もここから推定される であるとする。 エオ カキ ケ ここで、 10000 は大きいから,標本比率は近似的に正規分布 Np に従う。 コサシ に対する信頼度 99%の信頼区間は 得点の2 ク ケ ス セン × = 0.99 イウ コサシ ことがわ より, 小数第4位を四捨五入すると 0. タチツ Sp0 テトナ 点 10) 法集 107 である。 これより,p> 1/23 と推定できるので,Bさんは「当選確実」と判断できる。 (3)2人の議員を選ぶ選挙が行われ, 10万人の有権者が投票した。この選挙では 1/3 より多い得票率が あれば確実に当選する。 N人分が開票されて, 36% がCさんに投票していた。 Cさんの得票率の母 比率がに対する信頼度99%の信頼区間が(2) と同じ信頼区間で 「当選確実」 と判断することができ るとき, N= である。 二 | については,最も適当なものを,次の①~③のうちから一つ選べ。 ⑩ 100 500 1000 141 10000 (配点 10) (公式・解法集 109 統計的な

回答募集中 回答数: 0