学年

教科

質問の種類

数学 高校生

イがわかりません。 図の意味もいまいち分かってません。 どなたかすみませんがよろしくお願いします🙇‍♀️

10 難易度 SELECT SELECT 目標解答時間 15分 90 60 図のように,座標平面のx軸上に AC=CE=4 となる点 A, C, E をとる。 △ABC と ACDE はいずれも∠B=∠D=90°の直角二等辺三角形であり,この二つの三角形を合わせた図形を Kと する。また,一辺の長さが2の正方形FGHI を辺GH がx軸上にあるように左右に動かす。 すべての 図形はx軸に関して同じ側にあり、すべての図形は,周および内部を考えるものとする。 B D F ←→ I A -4- C E G2 H x 図形 K と正方形 FGHI に重なる部分があるとき, 重なる部分の図形の形状として正しくないもの は ア である。 ア の解答群 一つの直角二等辺三角形 ① 二つの直角二等辺三角形 ②一つの台形 ③一つの五角形 点 a を原点にとり,実数t を用いて点G( b, 0) とし,図形 K と正方形 FGHI が重なる部 分の面積を f(t) とすると,f(t) > 0 となるようなtの値の範囲は-5 <t < 5 である。 ただし, 1点のみが重なるときや, 重なる部分がないときは,f(t) = 0 とする。 a b に当てはまる組合せとして正しいものは イ である。 イ の解答群 ① ② ③ ④ a A A C C E b t-1 t+1 t-1 t+1 t-1 以下,このf(t) について考える。 f(0) ウ である。 ⑤ t+1 ⑤ E +

回答募集中 回答数: 0
数学 高校生

一番最初の式から分かりません教えてください🙏

Check 例題 284 自然数1,2, いろいろな数列の和 (1) 2 いろいろな数列 *** nについて,この中から異なる2つの自然数を選び, その積を計算する. このようにしてできる積の総和 Sm を求めよ. 考え方 たとえば, 3つの数a, b, cで考えてみると 舞台 T=ab+bc+ca が求める積の総和であり,さらに, (a+b+c)2=a+b2+c+2(ab+bc+ca) =a+b2+c+2T 2), T=(a+b+c)2- (a²+b²+c²)} ¿ts. この考え方を1, 2, 3, ......, nについて用いる. 123 n 1 2 ... n 6.2n 336 ... 3n 2 2 nn 2n3n... S=(1×2+1×3+... +1×n)+(2×3+2×4+…+2xn)+…+(n-1)×n 上の表の部分の和になっている.) 3つの数の場合と同様に考えると, (1+2+3++n)=(12+2+32++n²)+2S” であることがわかる. (1+2+3+…+n)=(12+2+32 +…+n)+2S,より, Sn= {(1+2+3+..+n)-(12+22+32+…+n2)} ( k: n \2 n k=1 11/11/12n(n+1)-1/n(n+1)(2n+1)] 考え方を参照 499 第8章 -n(n+1){3n(n+1)-2(2n+1)} 24 = 24 注 自然数1, 2,......,n (n-1)n(n+1)(3n+2) nに関して,この中の自然数んとその他の自然数との積の和は, k(1+2+......+n)k と表せる. n 1 2n(n+1)で くる。 これを用いると,2×Sn=_{k(1+2+ ・+nk2}となる. k=1 注》P=(x+1)(x+2)(x+3)×......×(x+n)の展開式はxのn次式となる. このとき x” の係数は 1, xn-1 の係数は 1+2+......+n= =1/2n(n+1)となる。 (x+n)のn個の( )について, では,x-2の係数はどのようにして求めればよいだろうか. Pを展開する際に,(x+1)(x+2), (x+3, )から数字を残り (n-2)個の()からxを選んで積を求めれば, 2個の x-2 の項を作ることができる. したがって, xn-2の係数の総和は、例題 284 と同様に考えればよい. つまり,x2の係数は -(n-1)n(n+1)(3n+2) となる. 24

回答募集中 回答数: 0
数学 高校生

この線部の式の意味がよくわからないので教えてください🙇‍♀️ 蝶々型の面積比の問題です。

216 総合演習問題 §7 図形の性質 ( 7 (12分20点) 〔1〕 太郎さんのクラスでは,数学の授業で次の問題が宿題として出された。 6円 ABの 4 形は 問題 △ABCにおいて, AB = 4, BC=2, CA =3とする。 辺 AB を 1:3 に内分する点を D, △ABCの内心をIとして, 直線 AI と辺BC の交 点をE, 直線DIと辺BCの交点をFとする。 このとき, Iは線分 DF をどのような比に分けるか。 (1) 内心についての記述として,次の①~③のうち、正しいものはア である。 ア |の解答群 ⑩ 三角形の3本の中線は1点で交わり, この点が内心である。 ① 三角形の三つの内角の二等分線は1点で交わり, この点が内心である。 三角形の3辺の垂直二等分線は1点で交わり, この点が内心である。 三角形の3頂点から対辺またはその延長に下ろした垂線は1点で交わ り,この点が内心である。 (2) 太郎さんは宿題について考え, 次のように解答した。 イ AI I 点Iは内心であるから, BE= であり, である。こ ウ EI オ のとき, BF 「カキ] EF FI ケ であるから, である。 DI ク コサ よって, 点Iは線分 DF を コサ: ケ の比に内分する。 (3)△ADIと△EFIの面積比は AEFI 「シス] = AADI センタ である。 (次ページに続く。) 3)

回答募集中 回答数: 0