学年

教科

質問の種類

数学 高校生

三項間漸化式 (2)で解説には1個しか式を書いてないんですけど、左の(I)には式を2個作って連立してるんですけど式は1個でもできるんですか?

1293項間の漸化式 2,=4,an+2=-a1+2an (n≧1) で表される数列{a, がある。 (1) (2) an+2-αan+1=β(an+1-αan) をみたす 2数α, β を求めよ. an を求めよ. 精講 an+2=pan+1+gan の型の漸化式の解き方は 2次方程式 f=pt+q の解をα,βとして,次の2つの場合があり ます。 (I) α≠β のとき an+2= (a+β)an+1-aban より an+2-dan+1=β(an+1-aan) an+2-βax+1=α(an+1-Ban) anをと 2次方程式を解の、とする anをしとして 700 ・① ......② ①より, 数列{an+1-Qan}は,初項 a2-way, 公比βの等比数列を表すので、 an+1-dan=βn-1 (azaar) ...... ①' 同様に,②より, an+1-Ban=α"-1 (α-βas) ...... ②' (β-α)an=β"-1 (a2-aa1)-α"-1 (az-Bar) (1) an+2=(a+β)an+1-aBan 解 答 与えられた漸化式と係数を比較して、 α+β=-1, aβ=-2 .. (a, B)=(1, 2), (-2, 1) (2) (α,β)=(1, 2) として an+2-an+1=-2(an+1-an) an+1-an=bn とおくと bn+1=-26 また, b=a2-a=2 n≧2 のとき, n-1 an=a1+2(-2)-1 =2+2・ k=1 :.bn=2(-2)^-1 1-(-2) ----(4-(-2)^-') 1-(-2) これは, n=1のときも含む. (別解) (α,β)(2,1)として an+2+2an+1=an+1 +2an [123] an+1+2an=a2+2a1 よって, an+1=-2an+8 2 ---2(a-3). α-3--3 a [124] 199 ①-②' より, 8 : an+1 β”-1 (a2-aa)-α"-1 (a2-Bas) ... an= したがって, an-0323-172(-2)*- 8 an= (4-(-2)-1) B-a 出 注 実際には α=1(またはβ=1) の場合の出題が多く, その場合は階差数 列の性質を利用します。 (本間がそうです) ポイント (II) α = β のとき an+2-Qan+1=α(an+1-aan) : an+1-aan=α"-1 (az-dai) ......③ an+2=pan+1+gan 型は, 2次方程式f=pt+g の 解α,βを利用して、 等比数列に変形し2項間の漸 式にもちこむ An+1 an+1 つまり、数列{an+1-αan} は, 初項 α2da, 公比αの等比数列. ③の両辺をα+1でわって an a2-aa1 an a² n-1 n≧2 のとき,k+1 ak a2day k+1 k=1\a" k=1 an よって, an a=(n-1).az-aa 演習問題 129 a=1, a2=2, an+2=3a+1-24 で表される数列{an}があ 7月) をみたす2 数 α, βを求めよ

解決済み 回答数: 1
数学 高校生

私の求め方ではダメなのでしょうか?

244 サクシード数学B 249 an+1=6am-3 +1 の両辺を3"+1で割ると an+1 a. =2• -1-140 であるか 3 +1 an 3" とおくと bn+1=2b-19 これを変形して 6m+1-1=2(0,-1)=26 また 6₁-1=1-1=-1=2 3 n 3”は ゆえに 1 an=1であるから (2)>0であるから,漸化式より az0 よって30 列で6+1=44-1 b„=4"-1 1 4"-1 列で bm-1=2.2"-1 3 目の歌である よって、 数列{b-1}は初項2,公比2の等比数 分 として、次の 4+1 よって、漸化式の両辺の逆数をとると an+5 同様にして, すべての自然数nについて > b=2である 立つ。 よって ay=nbm で an ゆえに TW an+1 25an b=2+1 245 =3b" であるから すなわち11 であるから + an+1 an5 a,=3"(2"+1)=6"+3" an+1 an 別解an+1=6a-31 の両辺を6+1で割ると45 1\n+1 b=- とおくと an 立 bn+1=bn+- 1 252 a=S ゆえに Qs+1=S+ Dan+1 よって また b₁=- =1 6"+16" (21) 1 a1 これを変形 Cn= とおくと OUTSIDE/1+1 Cn+1=C- 12 3 で1b,=1+(n-1)・1/2= よって,数列 {bm } は初項 1, 公差 等差数列 (4)。 また n+4 ゆえに、姜 5 an= 3 であるから an=- 5 よって, {cm} は初項が 階差数列の第n項が n+4 比数列で 2 1+1 HOUSE (S+3) V 2 の数列であるから, n2のとき 8.8=SF 251 (1) b=na とおくと, 漸化式から bn+1=bn したがって 40 3 1n_1/1\ 48.8=23 または Job b=1a=15 よって b=1 (n=1, 2,......) 253 正方 の長さを 「目)のである。 1\n-1) 1- ゆえに 312 nan=1 したがって,=1 のように 2 n D.をとる 2 2 (88) 1 2 D="D (2) nan+1=(n+1)+1の両辺をn (n+1)で割 CD= an+1) an 15 (I-1-8)8 ると D.C 1\" +1= n+1 n n(n+1) =1+ ① AABC 2 3 an n 1 bn=” とおくと 236+1=6+ n(n+1) A であるから,①はn=1のときも成り立 すなわち また • b₁ = b1=q=2 よって +391 つ。ゆえに cm=1+(2) n 2021-20 an=6cmであるから SE-8 項が 24461+(2)}= an=6"1+ 1 250 (1) とおくと BJJ (3) 1 n(n+1) であるから,n≧2のとき n-1 1 8-8=0 bm=2+2 =2+ k(k+1) k=1 bn+1=4b+3 an (-1)+(-1)+z= これを変形して bm+1+1=4(b+1) + + よって, 数列{bm} は初項が2, 階差数列の第 n も成り立つ。 また、4 ゆえに、 列である したが -1/1 1 (+1 3 また 30円 b1+1= +1=3+1=4 Jcb a1 よって, 数列{bm+1} は初項4, 公比4の等比数 =2+(1-1)=3-10

解決済み 回答数: 2
数学 高校生

126.1 このような記述でも問題ないですよね??

6 基本例題 126 連立漸化式 (2) 数列{an},{bn}をa=1, bı=-1, an+1=5a46n, bn+1=an+bnで定めるとき (1) an+1+xbn+1=y(an+xbn) を満たすx, yの値を求めよ。 (2)数列{an},{bn}の一般項を求めよ。 基本118,125 an+xbn=(a+xbı)y"-1 指針▷p.575 基本例題 125 (1) と同様に, 〔解法1] 「等比数列を利用」の方針によって解けばよい。 (2) (1) から,数列{an+xb} は公比yの等比数列となり 46 これに αn=bn+1-b を代入し α を消去すると bn+1=(1-x)b+(a+xbi)yn-1 02 ① an+1=pan+q"型の漸化式 (p.564 基本例題118) に帰着。 ・・・・・・・・・ よって,① の両辺を y +1で割ればよい。 (pdx+b) 解答 (1) an+1+xbn+1=5an-4bn+x(an+bn) =(5+x)an+(-4+x)bn よって, an+1+xbn+1=y(an+xbn) とすると ...... (5+x) an+ (−4+x)bn=yan+xybn²+√x + b₂+1=an + b₂ S 5+x=yを -4+x=xy に代入して整理すると x2+4x+4=0 ゆえに これがすべてのnについて成り立つための条件は 5+x=y, -4+x=xy したがって 求める x, yの値は (2) (1) から *(a+b) + s ② から a=bn+1-6n, an+1=bn+2-bn+1 これらを①に代入して x=+=DV=6(2+4 [参考] 〔解法2] [1つの数列 に関する漸化式に帰着させ [る] の方針による解答 an+1=5an-4bn ① x=-2 x=-2,y=3 an+1-2bn+1=3(an-2bn) よって,数列{an-26n}は,初項 α1-261=3,公比3の等比 るから bn+2-66n+1+9bn=0 特性方程式x 2-6x+9=0を 解くとx=3 (重解) よって、p.573 基本例題 124 と同じ方針で,まず一般項6m

未解決 回答数: 1