学年

教科

質問の種類

数学 高校生

223. このような記述でも問題ないですよね? またこの問題での接線を求めるときのプロセス、 ①接線の座標を仮定して接戦の方程式を立てる ②接線が通る点の座標を代入 ③微分を用いて求める という順番で進むのは一般的ですか??

演習 例題223 3本の接線が引けるための条件 (1) 曲線C:y=x+3x2+x と点 A(1, a) がある。 Aを通ってCに3本の接線が引 けるとき,定数aの値の範囲を求めよ。 [類 北海道教育大] 1970 基本 218 である。 る。 指針▷ 3次関数のグラフでは、接点が異なると接線が異なる(下の 検討 参照) から, 曲線CA (1,α) を通る3本の接線が引ける 針の① の 曲線C上の点 (t +3t'+t) における接線が A を通るようなtの値が3つある そこで, 曲線C上の点(t, t3+3t+t) における接線の方程式を求め,これが点 (1,α) を 通ることから, f(t)=a の形の等式を導く。 ・・・・・・ CHART 3次曲線 接点 [接線] 別なら 接線 [接点] も別 解答 y=3x2+6x+1であるから, 曲線C上の点(t, 3+ 312+t)に おける接線の方程式はy-(t+3t+t)=(32+6t+1)(x-t すなわち y=(3t2+6t+1)x−2t−3t2 ばよい。 この接線が点 (1,α) を通るとすると -23+6t+1=α ... ① f(t)=-2t+6t+1とすると f'(t)=-6t2+6=-6(t+1)(t-1) f'(t)=0 とするとt=±1 f(t) の増減表は次のようになる。 -1 1 0 |極大 5 .... 0 + 極小 -3 7 - 5 t f'(t) -3 f(t) 3次関数のグラフでは,接点が異なると接線が異なるから, もの3次方程式 ① が異なる3個の実数解をもつとき, 点Aか ら曲線Cに3本の接線が引ける。 したがって、曲線 y=f(t) と直線y=α が異なる3点で交わる 条件を求めて -3<a<5 -1/0 +トー の解 1 y=a t - Ku y=f(t) 定数 αを分離。 f(-1)=2-6+1 = -3, f(1)=-2+6+1=5 ①の実数解は曲線 y=f(t) と直線y=α との 共有点の座標。 検討 3次関数のグラフにおける, 接点と接線の関係 3次関数y=g(x)のグラフに直線y=mx+nがx=α, β (αキβ)で接すると仮定すると g(x)-(mx+n)=k(x-a)²(x-B)² (k=0) ←接点 重解 の形の等式が成り立つはずである。 ところが, この左辺は3次式, 右辺は4次式であり矛盾して いる。 よって,3次関数のグラフでは, 接点が異なると接線も異なる。 the これに対して, 例えば4次関数のグラフでは、 異なる2点で接する直線がありうる (前ページの 61 3 関連発展問題 38

回答募集中 回答数: 0
数学 高校生

階差数列を記述で解くときいつも n-=1のときa1=3・1^2-4・1+3=2より ①はn=1でも成り立つ と書いていたのですが、 とある模試の解説で n-1のとき3・1^2-4・1+3=2=a1 と書いていました。 私の記述方法でも問題ないのでしょうか??

基本例題 105 階差数列 (第1階差) 次の数列{an}の一般項を求めよ。 2,7,18,35,58, 1). (1+ 指針 数列を作る規則が簡単にわからないときは, 階差数列を利用するとよい。 数列{an}の階差数列{bn} とすると bn=an+1-αn () ME {an}: a₁ az a3 a4 {bn}: 616263 n≥20 これは 誤り! ...... n≧2のとき an-1 an CENA n-1 an=a₁+Σbk k=1 -TEX n≧2のときについて, 数列{an}の一般項を求めた後は, それがn=1のときに成り立つか どうかの確認を忘れないように。 THES n-1 =2+6≥k-1 k=1 bn-1 k=1_ n-15I 「n≧2」としないで上の公式αn=a+bk を使用したら, 間違い。 なぜなら, n-1 n=1のときは和②bk が定まらないからである。 k=1 n-1 an= a₁ + Zbr=2+(6k−1) 次の数列の CHART {an}の一般項わからなければ 階差数列{an+1-α,} を調べる =(( [~) • ( [~$ ) + ( [+s}}& 解答 数列{an}の階差数列を {bn} とすると((+1)+2=2 $105 {an}: 2,7,18,35,58, {bn} 5, 11, 17, 23,...... 数列{bn}は,初項 5, 公差 6の等差数列であるから bn=5+(n-1)・6=6n-1 120 =2+6・1/12 (n-1)n-(n-1) =3n²-4n+3 ...... ① 求めよ。 3n²-4n+3=3.12-4・1+3=2 TONOVOLEO p.5383 n=1のとき 初項はα=2であるから, ① はn=1のときも成り立つ。 an=3n²-4n+3 したがって (S+R)+(1+BS) I+ (1+x) 12 7 18 35 58 5 11 17 23 +6 +6 +6 a n≧2に注意。 (2+)2 nではない ことに注意。 (€+S+7)+(S+1)+1= Ekiak= n(n+1) C nの代わりにn-1 とおい たもの。 初項は特別扱い は1で1つの式に変 される (しめくくり)。 + (1+wx + + U ! $$U +(1+ms)}(1+8)

回答募集中 回答数: 0