学年

教科

質問の種類

数学 高校生

(イ)のところでなんでt²=1-2sinxcosxになるんですか?

しょう 98 第4章 三角関数 60 三角関数の合成(II) (1)ss のとき,f(s)=v3 cosx+sing の最大 小値を求めよ。 (2) y=3sin.rcos.r-2sinx+2cos r (OSIS) について =sincosz とおくとき,そのとりうる値の範囲を求め (イ)の式で表せ。 (ウ)の最大値、最小値を求めよ。 (1)sinx=t(または,cosx=t)とおいても!で表すことができ ません。 合成して,エを1か所にまとめましょう。 (2)IAので学びましたが,ここで,もう一度復習しておきま sing, COSIの和差積は, sin' + cos'x=1 を用いると、つなぐことができる。 解答 +cos.sin) その方程式を解 BLE-CORE-1 まし のにする。次に、 (1)(2)+/12--1 注 (i)は、 2sin 最大 99 11/12々を計算してもよい。この場合は、加法定理を利用 ) します。(1/2 2singを計算した方が早いです。 (2) (7) t=sincosr=√2 r-cosr=√2 sin (1-4) だから、 -sin(-4) :.-1≤t≤1 (イ) 2=1-2sin rcosェ だから 3 sin x cos x= (1. -(1-1)-2---21+ (") y=−³ (t+²²)²+13 (−1st≤1) 右のグラフより 最大値 12,最小値 -2 この程度の合成は、 すぐに結果がだせる まで練習すること 41 44 0 44 第4章 (1) f(x)=2(sin x cos T 合成する 2 T T +3 7 127 ポイント 12 12 0 最 I+ 3 12", 2018/1/27 すなわち のとき + 2 2 ( 最小値 2 演習問題 60 すなわち のとき 5 合成によって, 2か所にばらまかれている変数が1か 所に集まる y=cos' rx-2sincoss+3sinx (0≦x≦) ① について 次の問いに答えよ. (1) ① を sin2x, cos2cで表せ。 (2) ①の最大値、最小値とそのときのェの値を求めよ.

未解決 回答数: 0
数学 高校生

sinだけ2個三角形を書くのとcos,tanは左に書いて残りの角度が答えになる理由を教えてください

三角 050≤180 (1) sino= CHART 解答 GUIDE たすを求めよ。 √3 2 (2) COS 0=- √2 11125 (3) tan 6-- /3 三角方程式 等式を表す図を、定義通りにかく 三角比の定義 sino=y 半径の半円をかく。 r cos 6= ② 半円周上に,次のような点Pをとる。 tang= (1) 7=2 (2) *=√2 (3) 7-2 (1) y 座標が√3 (2) 座標が-1(3) x座標が√3 ③ 線分 OP x軸の正の部分のなす角を求める。 半径2の半円上で,y座標が√3で ある点は,P(1,3)とQ(-1,√3) の2つある。 求めるは,図の∠AOP と ∠AOQ Q 2 2120° 三角定規の辺の比を利用し よう。 32 (1) Q And -2-10 /1 2x 60° 160° √3 22 6060° であるから,この大きさを求めて 0=60° 120° (2) 半径√2の半円上で, x座標が -1 101 である点は,P(-1, 1) である。 √2 y2 (2) P 求める0 は,図の ∠AOP であるから, この大きさを求めて 1 135° √2 1 A 三平方の 45 ・1 0 √2 x 45° 0=135° を三 (3) 座標が-3 y座標が1である (3) 200 点Pをとると, 求める 0 は,図の ∠AOP である。 -2. 2 2 150° この大きさを求めて 0810 A. 30 ° 0=150° √√30 2 % 0 Ania 30° x x=-√3. y=1 とする。 ご注意 (3) tan0=20180° では、常に y≧0 であるから, tan0=- 1 とし 3 Ans CV110の 100°と次の等式を満たすを求めよ。 ton A==√√3

回答募集中 回答数: 0