学年

教科

質問の種類

数学 高校生

次の問題で思考プロセスで行っているところをどこまでのことを言っているのかどなたか解説お願い致します🙇‍♂️

例題 367 空間における点の一致 ★★★ 四面体 OABC において, △ABC, △OAB, △OBCの重心をそれぞれG1, G2, Gs とすると, 線分 OG1, CG2, AGg は1点で交わることを証明せよ。 段階に分ける 線分 OG1, CG2, AG3 が1点で交わる。 OG と CG2 の交点 D がAG 上にある。 G2 A • G3 I. OG と CGの交点Dの位置ベクトルを求める。 ●G1 II. 点Dが線分AG の内分点であることを示す。 B 思考プロセス 0 《ReAction 2直線の交点の位置ベクトルは, 1次独立なベクトルを用いて2通りに表せ 例題 363) 線分ABの中点をM とする。 点 G1, G2 は, 線分 CM, OM 上にあるから, 線分 OG1 と CG2 は1点Dで交わる。 OG1, CG2 は平面OCM 上の平行でない2つの線 分である。 点 D は線分 OG 上の点であるから OD=rOG=0A+/OB+/OC となる実数 tが存在する。 また, 点Dは線分 CG2 上の点であるから, CD:DG2 = s: (1-s) とすると ・① G25 A M B OD = sOG2 + (1-s) OC = 1 -OA + OB+(1-s) OC OA, OB, OC は同一平面上にないから,①,② より t S t = かつ =1-s 3 3 3 3 よって s=t= 4 ① に代入すると OD = (OA -(OA+OB+OC) = + (OA+3× OB+OC) OA+30Gs 3 1-$ G2 A M B G₁ OG₁ = (OA+OB+OC) 3 OG2=1/23 (OA+OB) OG₁ = (OB+OC) 点D は, 線分 OG1, CG2 3:1に内分する = 4 点D が線分AG 上にあ ることを示したいから, ODOÃOG で表 すことを考える。 よって, 点Dは線分AG を 3:1 に内分する点であるから, 線分 OG1, CG2, AG3 は1点で交わる。 OB+OČ OGg= であ 3 るから,この形をつくる ように変形する。

解決済み 回答数: 1
数学 高校生

右の画像の赤線の部分について質問です🙇🏻‍♀️ 赤線では、OBベクトルはそのまま、OAベクトルをOCベクトルを使った式に変えていますが、OAベクトルをそのままでOBベクトルをODベクトルを使った式に変えて解くと青線の計算をするときにsが消えてしまいました。 このようなと... 続きを読む

基礎問 1413点が一直線上にある条件 △OAB の辺 OA, OB 上に点C, D を, OC:CA=1:2 OD:DB=21 となるようにとり,ADとBCの交点をEとす るとき, 次の問いに答えよ. (1) AE:ED=s: (1-s) とおいて, OE をs, OA, OB で表せ. (2) BE EC =t: (1-t) とおいて, OE を t, OA, OB で表せ. (3) O OA, OBで表せ. 題文に「交点」 という単語があれば,そこに着目して数式に表せばよ ベクトルの問題では, 「点 = 2直線の交点」ととらえます。だから問 いのですが,このとき, 「3点が一直線上にある条件」 が使われます。 <3点 A, B, C が一直線上にある条件> I. Aが始点のとき AC=kAB II. A以外の点□が始点のとき □C=m+nB (ただし,m+n=1) (1) s (1-s), (2)0) t: (1-t) 12=312 「ADとBCの交点をE」 という文章を A, E, D は一直線上にある B, E, Cは一直線上にある 読みかえて, II を利用していることになります. また,この手法では同じベクトルを2通りに表し、次の考え方を使います。 は1次独立であるといいます) a=0, 60, ax のとき (このとき pa+qb=p'a+q'b⇒p=p', q=q' 解答 1) OE-(1-s)OA+SOD =(1-s)OA+s(OB) |3点A, D, E 直線上にある条件

解決済み 回答数: 1
数学 高校生

数学2についてです なぜ、kやlなどで文字を使って解いているのでしょうか 普通に、ふたつの曲線をイコールで繋ぐだけでいいと思ってしまったのですが、この問題において文字を使って解くメリットはどのようなものがあるのでしょうか 分かる方お願いします

9円/2円の交点を通る直線・円——— 座標平面上の2つの円:y2-2y-3=0 と C2y6y+5=0 は異なる2点で安 わる C と C2 の2つの交点を通る直線の方程式は,y= の2つの交点および点 (1,4) を通る円の中心の座標は x+ である.また,と 半径は [ (流通科学大/一部省略) 2曲線の交点を通る曲線 O3の「定点通過」で現れた考え方は,与えられた2曲線の交点を通る曲 線を作ることに応用できる. 2曲線f(x,y)=0,g(x,y)=0が共有点をもつとき k.f(x, y) +1·g(x,y)=0 (k, lは実数で, (k,1) (0,0)) は2曲線のすべての共有点を通る曲線を表す. なぜなら, 任意の共有点を (α,β) とすると,f(α,β) = 0 かつg (α,B)=0を満たすので k.f(α,B)+1g (α, β)=0が成り立つからである。 例えば,f(x,y)=2x+y+1,g(x,y)=x-2y-1とすれば,f(x,y)=0, g(x, y) =0はともに 直線を表し, Aはこの2直線の交点を通る直線を表す. 2円の場合 円 C:x2+y2+ax+by+c=0 ① 円 D: x2+y2+dx+ey+f=0 が2点P,Qで交わるとき, k (x2+y+ax + by + c) +1(x2+y2+dx+ey+f) = 0 は, P, Qを通る円または直線を表す. (③の左辺が2次式なら円, そうでないなら直線) 特に k = 1, '=-1のときは,P, Q を通る直線を表すが、 要するに, 2円の交点を通る直線は, ①② から得られる. 解答 前半と2の2つの交点を A,Bとすると,A,Bの座標は,+ x²-2x+y2-2y-3=0と+y2-6y+5=0 を同時に満たすから, k(x²-2x+y2-2y-3)+1(x²+ y²-6y+5)=0 も満たす.よって,①は,2円の2交点 A, B を通る図形を表す. [2次の項が消えるように,] k=1, l = -1 とすると,① は, -2x+4y-8=0 1 y= -x+2 これは直線を表すから, 求める直線AB の方程式に他ならない。 (後半) ①が点 (1,4) を通るとき, x= 1, y=4 を代入して 4k-21=0 これを①に代入して,んで割って, 1=2k 2-2x+y2-2y-3+2 (2+y2-6y+5)=0 3x²+3y2-2x-14y+7=0 2 14 7 1 2. x+ -=0 -y+ .. I 3 3 29 1 7 29 中心の座標は 半径は である. 3 3 3 -- = (1+8)+(1+S) 0,0 答 ③ ←2円の式の差を作ると,A,Bを 通る直線の式が得られる. 後半の別解: 2426y+5=0と直線AB 2y+4=0に対してAを用い ると, x+y2-6y+5 --+k(x-2y+4)=0 は,A,Bを通る図形式の形か ら円)を表す. x=1, y=4を代 入して, k=-2/3(以下略)

解決済み 回答数: 1