学年

教科

質問の種類

数学 高校生

223. このような記述でも問題ないですよね? またこの問題での接線を求めるときのプロセス、 ①接線の座標を仮定して接戦の方程式を立てる ②接線が通る点の座標を代入 ③微分を用いて求める という順番で進むのは一般的ですか??

演習 例題223 3本の接線が引けるための条件 (1) 曲線C:y=x+3x2+x と点 A(1, a) がある。 Aを通ってCに3本の接線が引 けるとき,定数aの値の範囲を求めよ。 [類 北海道教育大] 1970 基本 218 である。 る。 指針▷ 3次関数のグラフでは、接点が異なると接線が異なる(下の 検討 参照) から, 曲線CA (1,α) を通る3本の接線が引ける 針の① の 曲線C上の点 (t +3t'+t) における接線が A を通るようなtの値が3つある そこで, 曲線C上の点(t, t3+3t+t) における接線の方程式を求め,これが点 (1,α) を 通ることから, f(t)=a の形の等式を導く。 ・・・・・・ CHART 3次曲線 接点 [接線] 別なら 接線 [接点] も別 解答 y=3x2+6x+1であるから, 曲線C上の点(t, 3+ 312+t)に おける接線の方程式はy-(t+3t+t)=(32+6t+1)(x-t すなわち y=(3t2+6t+1)x−2t−3t2 ばよい。 この接線が点 (1,α) を通るとすると -23+6t+1=α ... ① f(t)=-2t+6t+1とすると f'(t)=-6t2+6=-6(t+1)(t-1) f'(t)=0 とするとt=±1 f(t) の増減表は次のようになる。 -1 1 0 |極大 5 .... 0 + 極小 -3 7 - 5 t f'(t) -3 f(t) 3次関数のグラフでは,接点が異なると接線が異なるから, もの3次方程式 ① が異なる3個の実数解をもつとき, 点Aか ら曲線Cに3本の接線が引ける。 したがって、曲線 y=f(t) と直線y=α が異なる3点で交わる 条件を求めて -3<a<5 -1/0 +トー の解 1 y=a t - Ku y=f(t) 定数 αを分離。 f(-1)=2-6+1 = -3, f(1)=-2+6+1=5 ①の実数解は曲線 y=f(t) と直線y=α との 共有点の座標。 検討 3次関数のグラフにおける, 接点と接線の関係 3次関数y=g(x)のグラフに直線y=mx+nがx=α, β (αキβ)で接すると仮定すると g(x)-(mx+n)=k(x-a)²(x-B)² (k=0) ←接点 重解 の形の等式が成り立つはずである。 ところが, この左辺は3次式, 右辺は4次式であり矛盾して いる。 よって,3次関数のグラフでは, 接点が異なると接線も異なる。 the これに対して, 例えば4次関数のグラフでは、 異なる2点で接する直線がありうる (前ページの 61 3 関連発展問題 38

回答募集中 回答数: 0
数学 高校生

212. このような記述でも問題ないですかね?? 0<h<aは書いていないですが問題ないですよね? (r^2=a^2-h^2は書いていてr,a,hは当然全て>0なのだから同様のことは言えていると思いました。)

330 00000 基本例題 212 最大・最小の文章題(微分利用) 類 群馬大 半径aの球に内接する円柱の体積の最大値を求めよ。 また,そのときの円柱の高 基本 211 さを求めよ。 指針 文章題では, 最大値・最小値を求めたい量を式で表すことがカギ。 次の手順で進める。 AM-* ① 変数を決め、その変域を調べる。 [②]最大値を求める量(ここでは円柱の体積), 変数の式で表す。 ③3 ②2 の関数の最大値を求める。なお,この問題では、求める量が,変数の3次式で表 されるから,最大値を求めるのに導関数を用いて増減を調べる。 無 なお,直ちに1つの文字で表すことは難しいから,わからないものは,とにかく文字を使 って表し、条件から文字を減らしていくとよい。 ならば、方程式 #SEN 計算がらくになるように 2h とする。 解答 円柱の高さを2h (0<2h<2a) とし, 底面の半径をrとすると r²=a²-h² 0 <2h<2aから 0<h<a Fo 円柱の体積を Vとすると V=лr² 2h=2(a²-h²)h =-2π(h-a²h) Vをんで微分すると V'=-2π (3h²-α²) =-2π(√3h+a)(√√3 h-a) 0くん <a において, V'=0となる a =1/3のときである。 のは,h= ゆえに,0くん<a におけるVの増 減表は,右のようになる。 したがって, V はん= a √3 よって体積の最大値 次回数でも学んだ h V' 2T V 4√3 9 のとき最大となる。 9-m- 0 ... h= a =1/3のとき,円柱の高さは 2 - 2√3 √3 a 3 -ла³, そのときの円柱の高さ 23 3 a *** 2x(a²-3).-4√3 a /3 9 + a √√3 0 極大 練習 ②212 底面の半径,および側面積を求めよ。 [R a 半径1の球に内接する直円錐で, その側面積が最大 三平方の定理=y(1) 変数の変域を確認。 atla31 82x25- [S- (円柱の体積) = (底面積)×(高さ) dV dh をV' で表す。 h = 0, αは変域に含まれて いないから 変域の端の値 に対するVの値は記入し ていない。 今後,本書の増減表は,こ の方針で書く。 12h 12π(a²-h²)h に対し, その高さ,

回答募集中 回答数: 0
数学 高校生

223.) この問題で記述している 「三次関数のグラフでは接点が異なると接線が異なる」 というのは一つの接線で2つの接点を持つ方程式も存在するが、3時間数は全てそうではない、ということですか??

43の考え方で s, f(s))で接する で接するとして 致する。 =(x-8)(x-1) 下の別 は え方によるものである。 ▼st を確認する。 方程式は x-31¹+81³. めの条件は、 方程 である。 をもてばよい。 -21-2) て、 sキナである。 0000 演習 例題223 3本の接線が引けるための条件 (1) |曲線C:y=x+3x2+xと点A(1, α) がある。 Aを通ってCに3本の接線が引 けるとき,定数aの値の範囲を求めよ。 1 本〔類 北海道教育大] 基本 218 -1)-8=-8 から パー 芹求めよ。 「指針3次関数のグラフでは、接点が異なると接線が異なる(下の検討 参照) から, 曲線CA (1,α) を通る3本の接線が引ける ・曲線C上の点 (t + 31+t) における接線が A を通るようなtの値が3つある そこで, 曲線C上の点(t, における接線の方程式を求め,これが点 (1, a) を +362+t) 通ることから, f(t) =αの形の等式を導く。 。 ********* CHART 3次曲線 接点 [接線] 別なら 接線[接点] も別 解答 y=3x2+6x+1であるから, 曲線C上の点(t, ピ+3t2+t) に おける接線の方程式はy-(t+3t+t)=(3t2+6t+1)(x-t) y=(3t2+6t+1)x-2t-3t2 すなわち この接線が点 (1,α)を通るとすると -2°+6t+1=α ① 定数 αを分離。 f(t)=-2t+6t+1 とすると Fit Maasto f'(t)=-6t2+6=-6(t+1)(t-1) f'(t)=0 とすると f(t) の増減表は次のようになる。 t=±1 ( t f'(t) f(t) -1 1 0 + 0 極小 極大 7 -3 5 ... - 5 1 -1/0; 1 y=a t |y=f(t) 3次関数のグラフでは、 接点が異なると接線が異なるから, の3次方程式 ①が異なる3個の実数解をもつとき, 点Aか ら曲線Cに3本の接線が引ける。 したがって、曲線 y=f(t) と直線y=α が異なる3点で交わる 条件を求めて -3<a<5 <f(-1)=2-6+1=-3, f(1)=-2+6+1=5 < ① の実数解は曲線 y=f(t) と直線y=α との 共有点の座標。 検討 3次関数のグラフにおける, 接点と接線の関係 3次関数y=g(x)のグラフに直線y=mx+nがx=α,β (αキβ)で接すると仮定すると g(x)−(mx+n)=k(x-a)²(x−ß)² (k=0) ←接点⇔重解 の形の等式が成り立つはずである。ところが、この左辺は3次式,右辺は4次式であり矛盾して いる。よって,3次関数のグラフでは, 接点が異なると接線も異なる。 これに対して, 例えば4次関数のグラフでは, 異なる2点で接する直線がありうる ( 前ページの 演習例題222 参照)。 したがって,上の解答の の断り書きは重要である。 練習点A(0, α) から曲線 C:y=x-9x2+15x-7に3本の接線が引けるとき,定数 73sceto() 223 aの値の範囲を求めよ。 341 6章 3 関連発展問題 38

回答募集中 回答数: 0
数学 高校生

211. 増減表の解答では空欄になっているところは写真のように斜線を引いていても問題ないですかね??

330 00000 基本例題 212 最大・最小の文章題(微分利用) 半径aの球に内接する円柱の体積の最大値を求めよ。 また, そのときの円柱の高 さを求めよ。 指針 文章題では, 最大値・最小値を求めたい量を式で表すことがカギ。 次の手順で進める。 ① 変数を決め、 その変域を調べる。 ② 最大値を求める量(ここでは円柱の体積) を, 変数の式で表す。 [③3] [②] の関数の最大値を求める。なお,この問題では、求める量が, 変数の3次式で表 されるから, 最大値を求めるのに導関数を用いて増減を調べる。 なお,直ちに1つの文字で表すことは難しいから、わからないものは,とにかく文字を使 って表し、条件から文字を減らしていくとよい。 - 解答 円柱の高さを2h (0<2h<2a) とし, 底面の半径をrとすると r²=d²-h2 0 <2h<2a から 0<h<a 円柱の体積をVとすると V=лr².2h=2(a²-h²) h =-2π(h-ah) V を ん で微分すると h= V'=-2x (3h²-α²2) =-2(√3h+a)(√3h-a) 0くん<a において, V' =0 となる のは, h= のときである。 ゆえに, 0 くん<a におけるVの増 減表は, 右のようになる。 したがって, Vはん= のとき最大となる。 a 1 1/3のとき、円柱の高さは2・ よって 4√3 体積の最大値 9 そのときの円柱の高さ h 0 V' V -ла³, a 2√3 3 = 2√3 a 3 a 23 0 √3 1± 2x(a²-9²).-4√3 xa² + | 極大 a √3 a 計算がらくになるように 2h とする。 群馬 基本211 三平方の定理 変数の変域を確認。 tlas 2x25-64 1 (円柱の体積) =(底面積)×(高さ) dV dh ◄2h を V' で表す。 h = 0, αは変域に含まれて いないから 変域の端の値 に対するVの値は記入し ていない。 今後、本書の増減表は,こ の方針で書く。 ◄2л(a²-h²)h

未解決 回答数: 1
数学 高校生

証明の2段目にx=0,1,-1,2で等式が成り立つと書いていますが、これは証明するためにこの4つの値で考えているという解釈で合っていますか??

自係数比較法 検討 係数比較法は, 恒等式の性質 (p.35 基本事項 2① : 各項の係数はすべて0) が根拠となる これをPがxの3次式の場合, ax+bx+cx+d=0 ・・・・・・ A について証明してみよう。 [証明] ax3+bx2+cx+d=0 A がxについての恒等式とする。 ...... x=0,1,-1,2で等式が成り立つから x=0 のとき d=0 ① x=1 のとき a+b+c+d=0 x=-1 のとき -a+b-c+d=0 x=2 のとき 8a+46+2c+d=0 ①から a+b+c=0 -a+b=c=0 8a+46+2c=0 ...... ...... 000 ② +③ から 26=0 ゆえに 6=0 このとき, ②, ④ から a+c=0, 8a+2c=0 これを解いて a=c=0 よって a=b=c=d=0 B 逆に,Bが成り立てば明らかに A は 3 0.x3+0.x2+0.x +0=0となり,これは 4 xについての恒等式である。 ...... すなわち ax+bx+cx+d = 0 がxについての恒等式⇔a=b=c=d=0 ax+bx+cx+d=a'x+b'x' + c'x+d' がxについての恒等式 ⇔(a-a′)x3+(b-b')x2+(c-c)x+(d-d')=0 がxについての恒等式 よって, その各項の係数はすべて 0 であるから a=a', b=b', c=c', d=d' なお, 上の証明では,次のように、 2つの部分を示していることに注意する。 Aが恒等式 x=0, 1, -1,2で成立α=b=c=d=0 (必要条件) a=b=c=d=0 A が恒等式 ( 十分条件)

回答募集中 回答数: 0