学年

教科

質問の種類

数学 高校生

二次方程式の質問です チャートの解説とは違う組み合わせで解いたんですけど答えが合わないです この解き方がダメな理由を教えてください

212 1. 基本 例 129 2次方程式の解と数の大小 (2) 00000 | 2次方程式 ax-(a+1)x-a-3=0が,-1<x<0, 1 <x<2の範囲にそれぞれ 1つの実数解をもつように、定数αの値の範囲を定めよ。 指針 f(x) =ax²-(a+1)x-a-3 (α0) として p.207 基本事項2 重要 13 [a<0] [a>0] y=f(x) グラフをイメージすると, 問題の条件を満 たすには y=f(x) のグラフが右の図のよ うになればよい。 + 0 1 すなわち f(-1) f (0) 異符号 L 2x O [f(-1)(0)01 かつ f(1) f (2) が異符号 [f(1)f(2) <0] である。 αの連立不等式 を解く。 T TO 0 ly=f(x) 2次方程式 128 129のように、2枚 豚の存在明の問題 このの存在範囲の問題につい 方式の実数解を 方程式(x)=0がわくと gの範囲に共有 + CHART 解の存在範囲 f(b)f(g) <0ならとの間に解(交点) あり f(x)=ax²-(a+1)x-a-3とする。 ただし α≠0 f(-1)f(0) <0から 2次方程式であるから、 (x2 の係数) ≠0 に注意 注意 指針のグラフから かるように,a>0 の問題は、題 126, 一方程 方程式(x) の範囲に実 ●グラフが指定され 2次関数のグラフ [1] 判別式 D この3つの条件に 放物線y=f であるとき, 件となる。 題意を満たすための条件は,放物線y=f(x) が-1<x<0, 解答 1 <x<2の範囲でそれぞれx軸と1点で交わることである。 すなわち f(-1)(0) <0 かつ f(1)(2)<0 ここで f(-1)=a(-1)-(a+1) (−1)-a-3=a-2, が下に凸),a< 0 (グラ f(0)=-a-3, f(1)=α・12-(a+1) ・1-a-3=-a-4, が上に凸) いずれの場合 f(-1)f(0) <0かつ [1]判別 f(2)=α・22-(a+1)・2-a-3=a-5 (a-2)(-a-3)<0 ゆえに (a+3)(a-2)>0 よって a<-3, 2<a また,f(1)(2)< 0 から ...... ① ゆえに (-a-4)(a-5)<0 (a+4)(a-5)>0 よって a<-4,5<a ...... ① ② の共通範囲を求めて a<-4,5<a これは α=0を満たす。 f(1)f(2)<0 が、題意を満たす条件で る。 よって, α>0のとき α < 0 のとき などと場合 けをして進める必要はな を意味す ●グラ 上の p する [2] 軸の [3] [1] [2] -4-3 2 5

解決済み 回答数: 2
数学 高校生

127番の問題がわからないです! ただ一つの解を持つ時に3と4に別れるのはyの値の積が0になる時を考えてるのかなと思ったのですが、なぜ126番の問題だとそれを考えなくても良いのかが全くわからないです 誰か教えて欲しいです!すみませんがよろしくお願いします🙇‍♂️

196 基本 例題 126 2次方程式の解と数の大小 (2) 00000 2次方程式 ax²-(a+1)x-a-3=0が, -1<x<0, 1 <x<2の範囲でそれぞれ つの実数解をもつように,定数 αの値の範囲を定めよ。 重要 12 p.191 基本事項 指針 f(x) =ax²-(a+1)x-a-3 (α≠0) としてグラ [a>0] フをイメージすると, 問題の条件を満たすには y=f(x) のグラフが右の図のようになればよい。 すなわち f(-1) f (0) 異符号 la<0 y=f(x) e 0 1 + 0 2x [f(-1)(0) <0] y=f(x) かつ f(1) f (2) が異符号 [f(1)(2)<0] である。 αの連立不等式を解く。 CHART 解の存在範囲 f(p)f(g) <0ならpgの間に解 (交点)あり 解答 f(x)=ax2-(a+1)x-a-3とする。 ただし, a≠0 題意を満たすための条件は, 放物線y=f(x) が-1 <x<0, 1 <x<2の範囲でそれぞれx軸と1点で交わることである。 すなわち ここで f(-1)f(0)<0 f(1)f(2)<0 f(-1)=α(−1)-(a+1) (−1)-a-3=a-2, f(0)=-a-3, f(1)=α12-(a+1) ・1-a-3=-a-4, f(2)=α・22-(a+1) ・2-a-3=a-5 f(-1)f(0) <0から ゆえに よって (a-2)(-a-3)<0 (a+3)(a-2)>0 また,f(1)(2)< 0 から a<-3, 2<a ...... ① 2次方程式であるから、 (x2の係数) 0 に注意 注意指針のグラフからむ るように,a>0 グラフ に凸), a<0(グラブ 凸) いずれの場合も F(-1)/(0) <0 f(1)(2)< が、題意を満たす条件で よって、a>0のとき のときなどと場合分け て進める必要はない。 ゆえに よって (-a-4)(a-5)<0 (a+4)(a-5)>0 a<-4, 5<a... ① ② の共通範囲を求めて a<-4,5<a これはα=0を満たす。 -4-3 2 5

解決済み 回答数: 1
数学 高校生

二次不等式が解けません この2枚目の自分のやり方がなぜダメなのか教えてください

187 基本事項 01 DO 重要 例題 1122次不等式の解法 (3) 191 次の不等式を解け。 ただし, αは定数とする。 (1) x²+(2-a)x-2a≤0 (2) ax²≤ax 基本110 文字係数になっても,2次不等式の解法の要領は同じ。 まず, 左辺 = 0 の2次方程式を 指針 解く。 それには ① 因数分解の利用 ②解の公式利用 が、ここでは左辺を因数分解してみるとうまくいく。 の2通りある 2次方程式の解α,βがαの式になるときは,との大小関係で場合分けをしてグ ラフをかく。もしくは,次の公式を用いてもよい。 a<βのとき (x-a)(x-B)>0⇔x<a, B<x (xa)(x-B) <0⇔a<x<B (2)x2の係数に注意が必要。 a0a=0,α<0 で場合分け。 CHART (xa)(x-3)の解α, B の大小関係に注意 の場合、左 形に。 に。 -1< ●場合、左の コピー4+50円 ての実数 v>0 (1)x2+(2-α)x-2a≧0から 解答 [1] a<-2 のとき,①の解は a≤x≤-2 [2] a=-2 のとき,① は (x+2)'≤0 よって,解は x=-2 [3] -2<αのとき, ① の解は (x+2)(x-a)≤0 ① [2] [3] x x a a 0 -2 -2≤x≤a 以上から a<-2のとき a≦x≦2 2-4x+10 a=-2のとき 2<αのとき (2) ax≦ax から ax(x-1)≤0. ① 0>(8-)(1 x=-2 -2≦x≦a [1]a>0 のとき, ①から x(x-1)≤0 両辺を正の数αで ときy=l ときy> よって,解は 2010- [2] α=0 のとき,①は 0x(x-1)≦0 これはxがどんな値でも成り立つ。意 よって、は すべての実数 [3] a< 0 のとき, ①から +6 ・軸は共有 これと 下に っては x0,1≦x 以上から x(x-1)≥0 >0 すべて a>0 のとき 0≦x≦1; a = 0 のとき すべての実数; a<0 のとき x≦0, 1≦x 割る。 ( となる。 は 「< または = 」 の意味で, <とのどちらか一方 が成り立てば正しい。 ①の両辺を負の数αで 割る。 負の数で割るから、 不等号の向きが変わる。 注意 (2)について, ax≦ax の両辺をax で割って, x≦1としたら誤り。 なぜなら、 ax = 0 のときは両辺を割ることができないし, ax < 0 のときは不等号の向きが変わ るからである。

解決済み 回答数: 2
数学 高校生

数学Ⅰの方程式の問題です。左写真の(1)(ⅲ)の問題で、解答にはx²-2x=tと置かれていたのですが、自分は右写真のように文字で置かずに解きました。そのときに解答では、文字でおいた後にtの範囲を求めていたのですが、自分の解き方の場合ではx²-2xの範囲を求めないといけないで... 続きを読む

69 68 第3章 2次関数 40 2次方程式の解とその判別 (1) 次の方程式を解け. (i)x2+4x-20 (ii)^-52+4=0 (iii) (x²-2x-4)(x²-2x+3)+6=0 (2) 2次方程式 x-4x+k=0 の解を判別せよ。 精講 (1) 2次方程式を解く (=解を求める)方法は次の2つです。 ① 因数分解した式) = 0 ② 解の公式を使う ②を使えば,因数分解できなくても解を求められますが,因数分解できる 式では,必ず因数分解する習慣をつけましょう. (2) 2次方程式を解くと, その解は次の3つのどれかになります。 ① 異なる2つの実数解 ② 実数の重解 ③実数解はない この3つのどれになるかを判断することを2次方程式の解を判別するとい います。 このとき, 判別式といわれる式を利用します。 解答 (1) (1) 解の公式より, x=-2±√60) (ii) 4-5x2+4=0 は (x²-1)(x²-4)=0 :.x2=1,4 よって, x=±1, ±2 tap 30- (i) (x²-2x-4)(x²-2x+3)+6=0 において x²-2x=t とおくと x²-2x をひとまとめ t=(x-1)2-1 だから, t≧-1 37 ポイント (t-4)(t+3)+6=0 .. t-t-6=0 .. (t-3)(t+2)=0 t≧-1 だから, t=3 |かけて-6, たして 1 となる2数を考 よって, x2-2x=3 (x-3)(x+1)=0 .x=-1,3 えると32 001 W

解決済み 回答数: 1
数学 高校生

この問題がよく分かりません。 何が分からないのかもわかっていないレベルなので 詳しく教えていただけるとありがたいです。 大雑把な質問で申し訳ありませんがお願いします🙇‍♀️

83 数分解できる。 もち 次式×2次式 よ」とい 解すればよい。 の 指針 与式がx、yの1次式の積の形に因数分解できるということは、 (与式)=(ax+by+c)(px+y+z) 例題 47 因数分解ができるための条件 00000 x2+3xy+2y2-3x-5y+kがxyの1次式の積に因数分解できるとき、定数k の値を求めよ。 また、 その場合に、この式を因数分解せよ。 [東京薬大] 基本46 を利用 =0 とおいて解く の公式。 狐の前の2 (0) 解答 を忘れないよう 数の範囲の因数 ら x= -3(y-1)±√9(y-1)2-4(2y2-5y+k) 2 ==3(y-1)±√y2+2y+9-4k の形に表されるということである。 恒等式の性質を利用(検討参照) してもよいが、 こ そこでは,与式を2次式とみたとき, = 0 とおいたxの2次方程式の解の1 次式でなければならないと考えて、その値を求めてみよう。 ポイントは、解がの1次式であれば、解の公式における内がりについての完 平方式(多項式)”の形の多項式] となることである。 P=x2+3xy+2y2-3x-5y+k とすると P=x2+3(y-1)x+2y2-5y+k P=0をxについての2次方程式と考えると、解の公式か x”の係数が1であるか ら,xについて整理した 方がらくである。 2 2章 解と係数の関係、解の存在範囲 e: と この1=12-(9-4k)=4k-8=0 ゆえに k=2 4 里の因数分 _-3(x-1)+√(+1) -3y+3±(y+1) (y+1)^=ly+1|であ = による。 このとき x= 2 すなわち x=-y+2, -2y+1 ないよう よってP={x-(-y+2)}{x-(-2y+1)} =(x+y-2)(x+2y-1) +x(1+28)るが、土がついているか ら,y+1の符号で分け る必要はない。 (p+4)=(0- 恒等式の性質の利用 検討 2 この2つの解をα, β と すると, 複素数の範囲で はP=(x-α)(x-β) と因数分解される。 Pがx,yの1次式の積に因数分解できるためには,この 解がyの1次式で表されなければならない。 よって,根号内の式y2+2y+9-4kは完全平方式でなけれ 完全平方式 ばならないから, y2+2y+9-4k=0 の判別式をDとする ⇔=0が重解をもつ ⇔判別式 D=0 ると, 1 いない (1)x2+xy-6y-x+7y+k x2+3xy+2y2=(x+y)(x+2y) であるから,与式が x, yの1次式の積に因数分解できると すると,(与式)=(x+y+a)(x+2y+b) ① と表される。 ...... ①は,xとyの恒等式であり, 右辺を展開して整理すると (与式)=x2+3xy+2y2+(a+b)x+(2a+b)y+abとなるから, 両辺の係数を比較して a+b=-3,2a+b=-5,ab=k これから,kの値が求められる。 い 歌の 8A 10-1-x+(8-x)(ローズ) 練習 次の2次式がx,yの1次式の積に因数分解できるように、定数kの値を定めよ。 ③ 47 また,その場合に,この式を因数分解せよ。 (8-8) (2) 2x2-xy-3y²+5x-5y+k

解決済み 回答数: 1