学年

教科

質問の種類

数学 高校生

2)、実数解が存在するための条件に関する質問です。 (1)で出てきた不等式が満たされればxが実数解を持つ。そのために不等式をyの関数とみて、yの最大値が0以上となるときの条件が、(*)をみたすxの存在条件になるのは分かってるつもりなんですが(簡単に言うとyも変数であるからだ... 続きを読む

54 第2章 複素数と方程式 標問 22 判別式 a b を実数の定数とするとき r'+y'+axy+b(x+y)+1=0 について考える. 以下の問いに答えよ. (*) α-2<0 より 求める条件は -462+4(a+2)≦0 すなわち J SE 55 MOORCONS ES 1% 0=8 +0+ (0) 62≧a+2 2次方程式 ax2+bx+c=0(a≠0) の解は x= -b±√b2-4ac 2a であり, a,b,cが実数のとき,D=62-4ac の符号により (2) 2<a<2 とする.(*)をみたす実数x, y が存在するための条件をα b (1) 実数y を固定したとき,についての2次方程式(*)が実数解をもつため の条件をα by を用いて表せ . 研究 (岐阜大) を用いて表せ. →精講 (1) について式を整理します . (*)は,実数係数の2次方程式ですか 解法のプロセス (1) 実数係数の2次方程式が実 数解をもつ ら 実数解をもつ (判別式) ≧ 0 が成り立ちます。 (2) (1)で実数が存在する条件をおさえてある ので、あとは実数y が存在する条件を求めます。 (1)で得た不等式を」についての2次関数のグラフ として考えるとよいでしょう. 条件 -2<a<2 はこのグラフが上に凸であることを示しています. <解答 (1)yは固定されている. (*)をæについて整理すると 2+(ay+b)x+y+ by + 1 = 0 ↓ (判別式) 0 (2) 2次関数f(y) のグラフが 上に凸であるとき f(y) ≧0 をみたす実数が 存在する ↓ f(y)=0 の (判別式) 0 判別式をDとおくと, (*)が実数解をもつための条件は, D≧0 である. D=(ay+b)2-4(y2 + by +1) より (a²-4)y°+26(a-2)y+62-4≧0 ......① (2) 2<a<2 のとき,不等式① をみたすyが存在するための a, b の条件を求 めればよい. f(y)=(a²-4)y2+2b(a-2)y +62-4 とおくと,-2<a<2であるから a-4<0 であり,f(y) のグラフは上に凸である. したがって,f(y)≧0 をみたす実数yが存在するための a,b の条件はf(y)=0の (判別式)≧0 である. b2(a-2)-(a2-4)(62-4)≥0 ..(a-2){62(a-2)-(a+2)(62-4)}0 ..(a-2){-462+4 (a+2)}≧0 D>0 ⇔ 異なる2つの実数解をもつ D=0 ⇔ 重解をもつ D<0 異なる2つの虚数解をもつ といった具合に解を判別することができる. a,b,c のいずれかが虚数のときは,判別式により, 重解であるか否かの 判別は 62-4ac = 0, 0 により可能であるが, 実数解をもつか否かの判別 はできない. 注意が必要である. 例えば, 虚数を係数にもつ2次方程式 x2-2ix-2=0 の判別式をDとおくと D MC =(-i)-(-2)=-1+2=1 (D≠0 より重解でないことが分かる) 判別式は正であるが, 解の公式より x=i±√1=i±1 であり,実数解をもたない.さらに, 方程式 2-(1+i)x+i = 0 である。 は 2-(1+i)x+i=(x-1)(x-i) と変形されるから x=1, i と 実数解と虚数解が共存する. 虚数を係数にもつ2次方程式については演習問題 30-130-2 も参照 せよ. 標問 109では3次方程式の判別式についても扱っている. + y 演習問題 A 22 整数とし, 2次方程式(k+7)'-2(k+4)x+2k=0 が異なる2つ (中京大) の実数解をもつとき,kの最小値および最大値を求めよ. 第2章

回答募集中 回答数: 0
数学 高校生

数bの等比数列の質問です。この問題の⑵で立式がなぜこのようになり、式変形もどのようにやっているかがわかりません。教えていただきたいです。

Date 重要 例題 28 S2m, S2m-1 に分けて和を求める n 一般項がαn=(-1)+1n2 で与えられる数列 {an} に対して, Sn=ak とする。 (1) a2k-1+a2k (k= 1, 2, 3, ......) をんを用いて表せ (2) S= (n=1, 2, 3, ...) と表される。 指針 k=1 (2) 数列{an} の各項は符号が交互に変わるから,和は簡単に求められない。 次のように項を2つずつ区切ってみると Sn=(12-22)+(32-42)+(52-62)+...... =b2 =b1 =b3 上のように数列{bm} を定めると,b=akは自然数)である。よって,m を自然数とすると [1]nが偶数,すなわちn=2mのときはS2m=bx=(az-1+aan)として求め られる。 [2]nが奇数,すなわちn=2m-1のときは,S=S2-1+αm より S2m-1=S2m-a2mであるから, [1] の結果を利用して S2-1 が求められる。 このように、nが偶数の場合と奇数の場合に分けて和を求める a2k-1+αzk=(-1)2k(2k-1)^+(-1)2k+1(2k)2 =(2k-1)-(2k)=1-4k (−1)偶数=1, (−1)奇数=-1 ={(2k-1)+2k} CUSTO×{(2k-1)-2k} Sm=(a1+a2) +(as+as)+...... +(a2m-1+azm) 451 1 3種々の数列 [1]=2mmは自然数)のとき = m m S2m (a2k-1+a2k) = (1-4k) n m= 2 k=1 k=1 =m-4.1/23mm+1)=-2m-m -であるから S.=-2(2)-=-n(n+1) [2]=2m-1(mは自然数)のとき azm=(-1)2m+1(2m)=-4m² であるから S2m-1=Szmazm=-2m²-m+4m²=2m²-m n+1 であるから m= 2 S₁=2(n+1)² - n+1 = (n+ 1 (n+1){(n+1)-1} 2 2 Sm=-2m²-mに m= =2を代入して,n の式に直す。 S2m=S2m-1+a2m を利用する。 Szm-1=2m²-mをnの 式に直す。 =1/12m(n+1) [1],[2] から Sn= (-1)"+1 -n(n+1) (*) (*) [1] [2] のS” の式は 符号が異なるだけだから, (*)のようにまとめるこ とができる。

回答募集中 回答数: 0