学年

教科

質問の種類

数学 高校生

看護の学校に進学希望の高3なんですけど数1で分からないとこがあり教えて欲しいです、 ケース9-3(1)がわかりません、それと逆数がよく理解できませんよろしくお願いします

OB √3+√2 と このように、逆数の関係になってい 基本対称式を作る数が, √3-√2 √3+√2 √√3-√2 ある場合があるよ。 出題の形には, √3-√2 √3+√2 1 x=- y= として, x+yやxy を求める場合 √3+√2 √√3-√2 √3-√2 ②x= √3+√2 として,x+1やx1を求める場合 x XC がある。特徴的なのは、基本対称式の積の方で, あたりまえだけど ①ではxy=1, ②ではx. =1となることだ。 XC 19-3 √2-√3 x= √2+√3 このとき、次の式の値を求めよ。 (新潟県厚生連佐渡看護専門学校) 1 (1) x+ 30 (2) x² + ( x 基本対称式を求めよう。 ← (1) は基本対称式のうちの1つ 処方せん (2)x2+y' を基本対称式x+y, xy で表すのと同じだよ。 x+1/2=(x+1)-2.8.12=(x+1)-2 (S) 文 √√2-√3 (√2-√3) 2-2√6+3 (1) x= 解答 √2+√3 (√2+√3) (√2-√3) 2-3 =2√6-5 まずは 有理化。 1 √√2+√3 (√2+√3) 2+2√6+3 x √2-√3 (√2-√3)(√2+√3) 812-3 =-2√6-5 よって x+ x =(2√6-5)+(-2√6-5-10... 答 等号が成立するよう差引計算をする。 (2) =(x+1)-2=(-10)^2=98 ・答 -2x・・ -=-2 1 X まず平方を作る。 ✓チェック 9-3 解答 別冊 p.9 1 x=√3-√2のとき,次のものを求めよ。 4501-0 1 (1)x+ 40 第1章 数と式 (2)x+ (3)x+2 1 (愛仁会看護助産専門学校) 有

未解決 回答数: 0