学年

教科

質問の種類

数学 高校生

波線ところから分からないので教えて欲しいです🙇‍♀️

領域問題② ② [2016 名城大] xy 平面上に、2本の半直線l: y=x(x2), my=-x (x≦0) がある。 l上を点P (+1, t+1) (t-1) が動き, m上を点Q (t-1, -1+1) (t≦1) が動く。 (1)直線 PQ の方程式をを用いて表せ。 1 -x2+1に接することを示せ。 (2) PQ はもの値によらず、常に放物線y=1/2x2 (3)tの値が1st1の範囲で変化するとき、 線分 PQ が動いてできる領域を求め, 図示せよ。 解説 asyson+1 [1] [2] から, a を xにおき換えて、線分 PQ いてできる領域を表す不等式は −2≦x<0 のとき -*Sys+1 0≦x≦2 のとき xsys +1 が動 これを図示すると、 右の図の斜線部分である。 ただし、境界線を含む。 (1) 直線 PQ の方程式は -t+1-(t+1) y-(t+1)= -{x-(t+1)} t-1-(t+1) ゆえに y=t{x-(t+1)}+t+1 よって y=tx-f2+1 (2) y=ax2+1とy=1/2x2+1を連立させて x²+1=tx-t²+1 ゆえに x2-4tx+4t2=0 よって (x-2)²=0 この方程式はtの値によらず、常にx=2tを重解にもつ。 1 したがって, 直線 PQはtの値によらず, 常に放物線y=-x'+1に接する。 4 (3) 線分 PQ の方程式は、 (1) から y=tx-t2+1 t-1≦x+1) ここでαを定数とし、直線x=αと線分 PQ の交点の座標をtの関数と考え、こ れをf(t) とすると f(t)=ta-t+1=-f+at+1=(t-1)+10 -3 a² +1 x=α と固定するときのの条件は 11... P かつ t-1≦a≦t+1 すなわち a-1≦tsa+1 ② ①,② から、点(a,t)の存在範囲は、 右の図の網の 部分のようになる。 ただし、境界線を含む。) t=a+1 したがって、 ①と②の共通範囲は -2 [1] −2≦a<0 のとき -1≤t≤a+1 ....... ③ O 2 a [2]02 のとき a-1≤t≤1 ・・・・・・・ ④ t= ここで,y=f(t) のグラフの軸は直線t=2 である 2 が、これは区間 ③区間 ④のそれぞれの中央の値 に一致する。 yのとりうる値の範囲を調べると [1] −2≦a<0 のとき 人 t=a-1 a yはt=-1, a+1で最小: 1=1/27 で最大となる。 f(-1)=f(a+1)=-a, a² -a≤y≤+1 [2] 0≦a≦2 のとき (1)=9 2 100 a² +1であるから,yのとりうる値の範囲は yはt=1, a-1で最小;t=1/2で最大となる。 f(1)=f(a-1)=α であるから, yのとりうる値の範囲は

回答募集中 回答数: 0
数学 高校生

√1+f(x)'の公式に当てはめて解いたのですが、回答の答えにはなりませんでした。これでは解けないのでしょうか?教えて頂きたいです。よろしくお願いします。

(5)) 2sin/128-tcos/1/2 (s)tsin/1/2 1 (6) (L) 12 (6XL)*+* 2 ■解説 ≪媒介変数表示された曲線の形状と長さおよび面積≫ =0とおくと, sin00 (π<< より 00 dy sin O (1)・(2) dx 1 + cos 0 このときy=0である。 また, -π<< πにおいて よって, 曲線Cは点 (0,0)においてx軸に接する。(→(あ) (レ dx de から,g(-π) <x<g(x)より =1+cos0 >0よりx=g(0) は単調増加だ dy さらに, de x=(→(う)(え)) -=h' (0)=sin0より,y=h(0) の増減表は次のようになる。 0≦y<2 (→(お), (カ)) 1 + 0 7 これより (020g+1) なお, 曲線Cの概形は次のようになる。 O 2 2 0.200 大阪 dy d0-> 2cos2d0-4sin-4sin (4) Pr(t+sint, 1-cost) 0=1のとき 方程式は sint = 1+cost y-(1-cost) - do (-4431) sint dt 1+cost であるから、もの (x-(t+sint)) (0<K<x) ここで,y=0とおくと, (1-cos't) =sintlx-(1+sin()), sint*0より よって -(1-cos³t) sint +(t+sint) =-sint+ (t+ sint) =t (→()) Qi(t. 0) =OP-OQ Q.P= = (t+sint, 1-cost) - (t, 0) = (sint, 1-cost) 2. =(2sin/12 cos/122sin2-12) = 2 sin 27 (cos 27. sin 172) ...... ① 0 (-π) 0 (π) dy nie. 0 do Ob y 2 となるので、Q.P がx軸の正の向きとなす角は 12 ラジアン( 10203-1 0 (-π) ... 20 x 一π x y 2 π (π) 0 V 0 V π 2 とする。また,P, Q 接線がそれぞれPi, Q 接線に移動した (5) 回転する前のC上の点Pがx軸との接点になったときの曲線をC とする。このとき t OP' = L (t) = 4 sin 2 dx (3) + do (d)² = (1 + cos 0)² + (sin 0) 2 =2(1+cos0)=4cos' 0≧≦t<zにおいてcos->0であるから 20 8-2 ①よりP/Q=PQ=2sin であるので OQ=OP-P/Q=4sin/2-2sin/2 = 2 sin/20 また,Q,R, OQtであることと,(4)の結果より

回答募集中 回答数: 0