学年

教科

質問の種類

数学 高校生

159.2 囲ってあるAEの長さを求める過程の記述に問題ないですか??

基本例題 159 図形の分割と面積 (1) 次のような四角形ABCDの面積Sを求めよ。 (1) 平行四辺形 ABCD で, 対角線の交点をOとすると AC=10, BD=6√2,∠AOD=135°のもの」(S) (2) AD//BCの台形ABCD で, AB=5,BC=8, BD=7,∠A=120° 解答 (1) 平行四辺形の対角線は、互いに他を2等分するから OA=1/123AC-5, OD=1/12 BD-3√2 したがって 指針 四角形の面積を求める問題は,対角線で2つの三角形に分割して考える。 (1) 平行四辺形は,対角線で合同な2つの三角形に分割されるから S=2△ABD また, BO=DO から △ABD=2△OAD よって, まず △OADの面積を求める。 (2) 台形の面積=(上底+下底)×高さ÷2 が使えるように, 未知の量である上底 AD の 長さと高さを求める。 まず, △ABD (2辺と1角が既知) において余弦定理を適用。 CHART 四角形の問題 対角線で2つの三角形に分割 △OAD= D=120A-OD sin 135° = 1/2.5-3√2-12-14/201 よって S=2△ABD=2-2△OAD(*)=4. (2) △ABD において、余弦定理により 72=52 + AD²-2・5・AD cos 120° = ゆえに よって AD>0であるから AD=3 頂点Aから辺BCに垂線 AH を引くと AD² +5AD-24=0 (AD-3)(AD+8)=0 B 15 2 A "135° -=30 0 H 120° 7 AH = ABsin∠B, ∠B=180°∠A=60° 08.00000 D C よってS=1/(AD+BC)AH=1/(3+8)・5sin60°= 55,3 4 ele p.245 基本事項 ②. 基本 158 (*) △OAB と △OAD は, それぞれの底辺を OB, OD とみると, OB=OD で, 高さ が同じであるから, その面積 も等しい。 参考 下の図の平行四辺形の 面積Sは S=1/23AC BD sino ・AC・J B [練習 159 (2) 参照] D 0 A-MANA C <AD // BC <(上底+下底)×高さ÷2 247 4章 19 三角比と図形の計量

解決済み 回答数: 1
数学 高校生

なぜAB+BC+CAは ①次の丸で囲ったような式になるのですか? ②BCは2ではないのですか? √2かける√2ではないのですか?

基本例題 168 円錐に内接する球の体積・表面積 図のように, 高さ 4,底面の半径√2の円錐が球Oと側面 で接し、底面の中心Mでも接している。 (1) 円錐の母線の長さを求めよ。 (2) 球Oの半径を求めよ。 (3) 球Oの体積V と表面積Sを求めよ。 指針 円錐の頂点Aと底面の円の中心 M を通る平面で円錐を切った切り口の 図形 (右図の二等辺三角形ABC) について考える。 (1) 円錐の母線は、 右の図の辺AB である。 (2) (球の半径)=(△ABCの内接円の半径) 1801 4 (3)(2) の結果と公式 V=13πr", S=4zr2 を利用。 CHART 空間図形の問題 平面で切る(断面図の利用) 解答 円錐の頂点をAとすると, A と点M を通る 平面で円錐を切ったときの切り口の図形は, 図のようになる。 (1) 母線の長さは √BM2+ AM2=√(√2)^2+4°=3√2 (2) 球Oの半径をrとすると △ABC=11 (AB+BC+CA) M = 2/(2√2+3√2.2) =4√2r △ABC=121・2√2・4=4√2 であるから したがって 2 (3) (2)から 4√2r=4√2 r=1 •1³= S=412=4π 基本 161 A TC ABC = √2+√²2² = 2 2²/₁24=1 C 三平方の定理 ではないのか BMC \AABC=AOAB A M + △OBC+ △OCA ■△ABC=1/2BCAM Lokator 4 3 <S=4πr2 <V= p. 250 例題 161 (3) と同じ 要領。 πr³ 259 Dus 4章 19 三角比と図形の計量

解決済み 回答数: 1
数学 高校生

⑹で図形の対象性より外接球と内接球の中心が一致すると書いてありますが、 図形の対象性とはどういうことですか?

262 第4章 図形と計量 Think 例題 137 Sing= 正四面体の種々の量 ∠OMA=0 とする.また,頂点Oから平面ABCに下ろした垂線の足を 1辺の長さがα の正四面体OABC で, 辺BCの中点をMとして、 Hとする. 次の値を求めよ. (1) cose (3) △ABCの面積S (5) 正四面体の内接球の半径r [考え方] OH OM 0 1002000010 B A 正四面体の内接球の半径 001 内接球の中心をIとすると, OI, AI, BI, CI で, 四面体を4つ ania. の三角錐に分割したとき,それぞれの角錐の高さが内接球の半 径になる. CODE FOT つまり、内接球の半径は, 三角形の面積を分割して内接円の半 径を求めたアイデアと同様に、分割してみる. 正四面体の外接球の半径 外接球とは 4点 0, A,B,Cを通る球で, 対称性を考えれば, 内接球の中心と外接球の中心は一致する . 外接球の半径は OIになることを利用する. 解答 ∠OMA を含む △OAM に着目すると, on Jend A √√3 OM=AM=- 2 3507-03 また, 対称性より, 点Hは△ABC の重心である。 cos A= a 0 (2) sin0=√1-cos20 3 △OMH において OH = OMsin O √3 2 正四面体は左の図のように回転させても同じような立 体の状況になる. このように図形や立体が対称性をもつ場合,その性質 B を利用して考えるとよい。 (1) 点Hは線分 AM を 2:1に内分 する. ここで,(2) OHの長さを A H 求めるから, 辺 OH を含む △OMH B において, >(2) OH の長さ (4) 正四面体の体積V (6) 正四面体の外接球の半径R -ax THOSEBEN HM _1 OM AM == 3 2√2 3 2√2-√6 3 =- a 0-0000-001 802+024x 8\084-04-2A 0 0 H 1 /3 2 €OC LOCA +06) M AM M **** C -a=AM A B a 160° 20 B M 重心については p.426 参照 sin'0+cos'0=1 を |利用 A BET

回答募集中 回答数: 0
数学 高校生

235の(2)(3)について質問です。AGを求めるときに展開図をつかって考えると、直線になっているので求められないじゃんと思ったんですけど、(2)(3)はどのような図形になるのですか? 教えてほしいです。

19 空間図形の計量 215121 * 234 1辺の長さが1である正四面体 ABCD に外接する球および内接す 23 半径をそれぞれ求めよ。 237F 実戦編 * 235 右の図は,AB=2, AD=3, AE=1の直方 体である。 辺BC上に点Pをとり,点Aから点Pを通って, 点Gまで直線で結ぶ。 E このとき、次の問いに答えよ。 0 (1) AP + PG の最小値を求めよ。 〇(2)(1)のとき,∠APG の大きさを求めよ。 (3) (1) のとき, APG の面積Sを求めよ。 2 F 236 右の図のような, 1辺の長さが1の立方体ABCD- EFGHの対角線 EC に頂点Aから垂線 AK を引く。 ∠EAK, KAB をそれぞれα, β とするとき, cosa, COS β を求めよ。 B 3 解答別冊 p.6 A E H P D B F 2371辺の長さがαの正方形を底面とする四角錐 O-ABCD がある。 OA=OB=OC=OD = αのとき (1) この四角錐の高さをαで表せ。 (2) PAD上に点Qを辺AB上にAP=BQ=xとなるようにと 三角錐 P-AQD の体積を最大にするx を α で表せ。 (3) 0=∠QPD とおく。 x が (2)で求めた値のとき, COSOの値とQPD を求めよ。 - Hint 234 内接する球の半径をrとして正四面体の体積をで表す。 235 展開図で考える。 236 <CAE =∠AKE = 90° であることに注意。 337 (?)から底面に下ろした垂線をOH, Pから底面に下ろした垂線をPHとする

回答募集中 回答数: 0
数学 高校生

237の(3)について質問です。 なぜ、AP=AQが二分のaだと、PQも二分のaと分かるのでしょうか? あと、PD=√3Apになる理由も教えてほしいです。 分かる人いたら教えて欲しいです。 お願いします。

辺BC上に点Pをとり,点Aから点Pを通って, 点Gまで直線で結ぶ。 このとき、次の問いに答えよ。 (1) AP+PG の最小値を求めよ。 (2) (1) のとき, ∠APGの大きさを求めよ。 (3) (1) のとき, APGの面積Sを求めよ。 236 右の図のような, 1辺の長さが1の立方体ABCD- EFGHの対角線 EC に頂点Aから垂線 AK を引く。 <EAK, KAB をそれぞれα, β とするとき, cosa, COS βを求めよ。 Hint 234 内接する球の半径をrとして正四面体の体積をで表す。 235 展開図で考える。 きる。 Hは ABCD の重心であるから MH-DM-3-√3 = 2 E 6 -MH²-(43)-(4) - 3 2 AH"=AM²-MH²= 237 1辺の長さがαの正方形を底面とする四角錐 O-ABCD がある。 OA=OB=OC=OD=αのとき (1) この四角錐の高さをαで表せ。 よって AH= F 3 3 実戦編 B A (2) 点Pを辺AD上に点Qを辺AB上にAP=BQ = x となるようにとる。 三角錐 P-AQD の体積を最大にする x を a で表せ。 (3)0=∠QPD とおく。 x が (2)で求めた値のとき, COSA の値とQPDの面積 を求めよ。 香川大) 236 ∠CAE=∠AKE =90° であることに注意。 237 (2) から底面に下ろした垂線をOH, P から底面に下ろした垂線を PH' とす △OAH △PAH' である。 E P F C G 235~237 の解 AE=BC ∠EAC=∠CBE (=∠R) AC=BE より △AEC≡△BCE AK, BLは辺ECを底辺としたときの AK=BL これより AEK (直角三角形の合同条件、斜辺と他 EK=CL ゆえに CL=EK =√AE²-AK²= よってK, LはCE の三等分

回答募集中 回答数: 0
数学 高校生

(2)が、解説見ても分からないです。

例題 137 三角比と内心 外心 鋭角三角形ABCの内部の点Pから3辺BC, CA, ABに下ろした垂線 の長さをそれぞれx,y,zとする。点Pが次の条件のとき、x:y:zの比 , A,B,Cのうち必要なものを用いて表せ。(必要でなければ用いなく てもよい) mi CA SAC (1) P △ABC の内心 「考え方」 解答 (2)) PẢ (1) 内接円の半径をrとすると, x=y=z=r (2) 外接円の半径をRとすると, AP=BP=CP=R8A (2) △ABCの外接円の半径をR, 辺BCの中点をMとする. 点Pは△ABCの外心だから, △PBC は, PB=PC=R の 二等辺三角形で, PM⊥BC (1) Pは△ABC の内心だから,x,y,zは A 内接円の半径である. よって, x:y:z=1:1:1 ..1 ∠BPM=∠CPM/...... ② oor 3 図形の計量 B 注>練習 137 については,点Aから辺BC (1) に下ろした垂線の足をD, 外接円の半 径をRとして,次の等式を利用すると よい. 14 16, 1 (1) x=AD=AB sinB C AABC OHLD - 同様にして, y=RcosB, z=RcosC よって, P² ・・2Rsin CsinB= -Rsin Bsin C 3 (2) x=BD・ cos C = ABcos B. cos C sin C sin C Pl y ①より、 PM=x また, ∠BPC=2Aだから,②より, ∠BPM=A したがって,直角三角形 PBM で, x=PM=PBcosA=Rcos A Ace ne .y. CO M C P! DOL 02-0A x:y:z=Rcos A: Rcos B: Rcos CDAGA =cos A: cos B:cos C A [XC B MD +08)! P 内心,外心について は p.520 参照 -=2Rsin Ccos B. Cos C sin C *** CH (2) したときに ∠BPC は, 弧 BC に対する中心角 A Pl LIC D 235 =2R cos B cos C 第3章 C

未解決 回答数: 1