学年

教科

質問の種類

数学 高校生

数Ⅰデータの分析の質問です。 1枚目の表(ⅰ)、表(ⅱ)にある数学、国語のテスト結果の度数、相対度数から2枚目の表(ⅲ)、表(ⅳ)にある結果はどのように導けるか教えてください🙇🏻‍♂️ 数学が80点以上かつ国語が80点以上がなぜ48人であり9.6%となるのか分かりません よ... 続きを読む

◆データの分析の補足◆ 2 元表を利用しよう! ある高校で,500人の生徒にある数学と国語 (現代文) のテストを行った。 このテストについて, 表 (i) 数学のテスト結果 A:80点以上, A:80点未満 数学 A ((i) 数学で, 80点以上の生徒達をA, 80点未満の生徒達をĀとおき,また, (i) 国語で, 80点以上の生徒達をB, 80点未満の生徒達をBとおいて, それぞれの人数を調べて集計すると,次のような表 (i) (ii) の結果が得られた。 ここで,AAを,それぞれ数学が 得意な人達と不得意な人達とし, B とBもそれぞれ国語が得意な人達 と不得意な人達と分類することにす ると,表(i) から, 数学が得意な度数 人は全体の20%で, 不得意な人は 80%であることが分かる。 同様に 表 (ii) から, 国語が得意な人は全体 の40%で,不得意な人は60%であ ることが分かるんだね。 100 400 相対度数 20% 80% 表 (ii) 国語 (現代文)のテスト結果 B:80点以上, B:80点未満 国語 B B でも,このように数学と国語のデ ータを個別に見ている限り, これだ けで終わってしまうんだけれど,学 校側には,各生徒の数学と国語のデ 度数 200 300 相対度数 40% 60% ータは共にそろっているので、この2つのデータを併せて,集合論で学んだ n(A∩B), n(A∩B), n (A∩B), n (A∩B) を,次の表 (ii) や (iv) のような形 数学と国語 数学が得意で 数学が不得意 数学と国語が が共に得意 国語が不得意で国語が得意 共に不得意な な人の人数な人の人数 人の人数 で表すことができるんだね。 250 人の人数

解決済み 回答数: 1
数学 高校生

なぜこれでAP:PLをもとめられないのでしょうか

化学重 本題 が1に等しい △ABCにおいて,辺BC, CA, AB を 2:1 に内分する点をそ 84 メネラウスの定理と三角形の面積 M,Nとし, 線分AL と BM, BM と CN, CN と AL の交点をそれ それL, P Q, Rとするとき P:PR:RL= AP: APQR ・イ :1である。 の面積は である。 (1) ΔABL と直線CN にメネラウス→LR: RA これらから比AP: PR RL がわかる。 △ACL と直線BM にメネラウスLP:PA (2) 比BQ:QP: PM も (1) と同様にして求められる。 ABCの面積を利用して,△ABL→△PBR → APQR と順に面積を求める。 00000 [類 創価大] ・基本 82,83 P UM N Q R B 2. L1C CHART 三角形の面積比 等高なら底辺の比, 等底なら高さの比 AABL と直線 CN について, メネラウスの定理により B CA 定理を用いる三角形と aa3M 線を明示する。 AN BC LR =1 NB CL RA N P3 A Q RO 2 3 LR LR すなわち . =1 1 1 RA B 2 RA =1 aa よって LR:RA=1:6 ① △ACL と直線 BM について, メネラウスの定理により 2 AM CB LP 13 LP MC BL PA =1 すなわち LP =1 22 PA PA -1 4 3 よって LP:PA=4:3 ② T AC 2 3 ゆえに A 別解 △ABP= -△ABL= 3 7 ①②から AP:PR: RL=3:イ3:1 (2)(1) と同様にして, BQ:QP:PM=3:3:1から AABL= -△ABC= APQR = 3 32 • 7 3 A -AABC= ABCQ, CAR も同様であるから △PQR=(1-3×27/3) ABC="/17 7 SLS AP:PR: RL HA =l:min とする DE n 1 m+n 2 3 2 APBR= -△ABL= 1+m 6' 2 3' 7 A から l=m=37 -△PBR= 1/1 7 4 L, M, Nは3辺 比に内分する点で ら、同様に考えら BAAD する点を

未解決 回答数: 1
数学 高校生

矢印を引いているところの変形がわかりません。 どなたかすみませんがよろしくお願いします🙇‍♀️

94 難易度 ★★ SELECT SELECT 目標解答時間 15分 90 60 以下の問題を解答するにあたっては,必要に応じて巻末の正規分布表を用いてもよい。 次のような科学者 A 博士のメモが見つかった。 19 ア の解答群 89 このメモでは、小数第2位の数字が3であるかはっきりしない。 仮説検定をすることで,この確率の値について考えてみよう。 (1) 実際に粒子 Rを100個取り出したところ 31個が性質Pをもっていたとする。性質Pをもつ確 率は0.33 より小さいと判断してよいかを, 片側検定を用いて, 有意水準 5% で検定する。帰無 仮説は = 0.33 であり, 対立仮説はか ア 0.33 である。 粒子Rが性質Pをもつ確率は0.3である 256 -0.33 0.67 ×0.332 201 201 0.221 X 10 R 0.83 P 0.33 ② ≠ 20,1080 0.2389 0.88 33 14 帰無仮説が正しいとする。 粒子Rを1個取り出すとき、性質をもつならば1もたないなら ば0 の値をとる確率変数を Xとする。 X,の期待値をE(X), 分散をV(X), 標準偏差を とする。 E(X) は 0. イウであり, V(X) は 0.エオである。P(1-P)=0.33×0.67=0.24 0.33 粒子 R を 100個取り出したときに性質をもつものの個数は,二項分布カに従う! 4/0.0200 カ 1の解答群 0.4. 788 (20 ⑩ B(100,0.33) ① B(100,0.31) B(10, 0.33) B (10, 0.31) 31-0.33 とみなすと, Z= は近似的に標準正規分布に従う。 粒子を100個取り出したときに性質Pをもつものの割合をYとする。 個数 100が十分大きい YA #2 070147 ク ク ]】の解答群(同じものを繰り返し選んでもよい。 (n) (0 032 0.31 ① 0.32 0.33 0 ④ 1 (5) 10 100 320 0 of 0.47 と近似すると,P(Y≦0.31)の値は ケ であり、実際に100個取り出して31個が性 02 質をもっていたとしても、帰無仮説は棄却されず、確率は0.33 より小さいと判断できない。 ケ については,最も適当なものを、次の①~④のうちから一つ選べ。 547 0.11 ① 0.27 0.33 0.47 ④ 0.66 142 (2) 粒子R を取り出す個数をnとする。 0.31n 個が性質Pをもっていたとする。 n を十分大きいとみ なしの100をnに変えて検定するとき,帰無仮説が棄却されるようなぇの値として適するものは 0142) 200, 500, 1000, 2000, 5000, 10000 のうちに全部で コ 個ある。 0.50 10,08 143 (配点 10) (公式・解法集 107 108 110

解決済み 回答数: 1
数学 高校生

エオの分散がわかりません。 写真の上の方が問題になってます!! 私は分散と言われたら2枚目の写真のように解いていたのですが、解説を見ると蛍光ペンで引いているところのように書いてあったのですが、v(x)=p(1-p)は2枚目の写真と同様分散を求める時にはいつでも使えるのですか... 続きを読む

94 仮説検定 こう解く! 以下の問題を解答するにあたっては,必要に応じて巻末の正規分布表を用いてもよい。 次のような科学者A博士のメモが見つかった。 性質をもつ確率は0.3である このメモでは、小数第2位の数字が3であるかはっきりしない。 仮説検定をすることで,この確率の値について考えてみよう。 (1)実際に粒子 R を100個取り出したところ, 31個が性質Pをもっていたとする。 性質Pをもつ確 率は0.33 より小さいと判断してよいかを,片側検定を用いて,有意水準5%で検定する。 帰無 仮説は = 0.33 であり、 対立仮説はが 10.33 である。 解答群 ① > ア ② キ 帰無仮説が正しいとする。 粒子Rを1個取り出すとき、性質をもつならば1, もたないなら ば0の値をとる確率変数を Xとする。 Xの期待値をE(X), 分散をV(X),標準偏差をとする。 E(X) は 0. イウ であり,V(X)は0.エオである。 粒子 Rを100個取り出したときに性質P をもつものの個数は,二項分布 カに従う。 カの解答群 ⑩ B(100, 0.33) ① B(100,0.31) ② B(10, 0.33) ③ B (10, 0.31) STEP 帰無仮説を正しく捉えよう 1 ●帰無仮説が = 0.33 である から,確率の計算はその値を 用いて行う。 とみなすと Z= は近似的に標準正規分布に従う。 粒子Rを100個取り出したときに性質Pをもつものの割合をYとする。 個数 100 が十分大きい Y-# ク の解答群 (同じものを繰り返し選んでもよい。) ⑩ 0.31 ① 0.32 (2 0.33 ③ 0 11001000 ケ 2 STEP 標準正規分布に近似しよう nが十分大きいとき二項分 布は正規分布に近似でき、さ そらに確率変数の標準化により 標準正規分布に近似できる。 ここではn=100 が 「十分大 「きい数」 であることが示され ている。 =0.47 と近似すると,P(Y0.31) の値は であり、実際に100個取り出して31個が性 質Pをもっていたとしても、帰無仮説は棄却されず,確率は0.33より小さいと判断できない。es. 0001 ケについては、最も適当なものを、次の①~④のうちから一つ選べ。 ⑩ 0.11 ① 0.27 ② 0.33 ③ 0.47 ④ 0.66 (2)粒子R を取り出す個数をnとする。 0.31 個が性質Pをもっていたとする。 n を十分大きいとみ なし(1)の100に変えて検定するとき、帰無仮説が棄却されるようなnの値として適するものは 200,500, 1000, 2000, 5000, 10000 のうちに全部でコ 個ある。 STEP を大きくして考えよう 3 取り出す個数nが大きければ 大きいほど棄却域に入りやす くなる。 0.31が棄却域に入る。 ような大きさのn を考えよう。 解 答 (1) 実際の標本における性質Pをもつものの割合 小さく, 片側検定を用いるので, 対立仮説は 31 = 0.31 が 0.33 より 100 p < 0.33 ( 1 帰無仮説が正しいとすれば,性質Pをもつ確率が p=0.33 であるから イウ E(X)=p=0.33A (1 A エオ V(X)=p(1-1) = 0.33×0.67=0.2211≒0.22 粒子 R を100個取り出すとき,p=0.33 であるから,性質をもつも のの個数は二項分布 B (100, 0.33) に従う。 個数100が十分大きいとみなすと, 二項分布は近似的に正規分布に従う。 したがって,粒子Rを100個取り出したときに性質をもつものの割 定義に従うと B) 1 E(X) = 0.P(X=0)+1・P(X=1) =0.0.67+1・0.33 =0.33 1 となる。 CB 合を Y とすると, Yは期待値が E (X), 標準偏差が 0 分散の公式を用いて 100 10 の正規 分布に従う。 Point V(X)=E(X2)-{E(X)} = 0.33-(0.33) 実 定 標準 0=0 であ

解決済み 回答数: 1