学年

教科

質問の種類

数学 高校生

(ィ)の解説でan+2=an+1+anができるのが何故か教えて欲しいです!!

210 第7章 数 列 基礎問 135 場合の数と漸化式 6/5 (1)5段の階段があり, 1回に1段または2段 登るとする. このとき, 登り方は何通りある か. ただし, スタート地点は0段目とよぶこ とにする. (右図参照) (2)(1) と同じようにn段の階段を登る方法が an通りあるとする. このとき, (ア) α1, a2 を求めよ. (イ) n≧1 のとき, an+2 を αn+1, an で表せ. ◎(ウ) αg を求めよ. [N 139 211 (イ) 1回の登り方に着目して (n+2) 段の階段を登る方法を考えると次 の2つの場合がある. star ① 最初に1段登って, 残り (n+1)段登る ② 最初に2段登って, 残りn段登る ① ②は排反で (n+1) 段登る方法, n段登る方法はそれぞれ 舎の事象がすまたま、他方の事象 起きまない状態 an+1 通り, an通りあるので、 an+2=an+1+an an+2=an+1+an (ウ)(イ)より, ([+a)o= mi 平 =246+α5=2(astq4)+as 精講 (1) まず, 1段,2段, 2段と登る方法と2段, 1段, 2段と登る 方法は,異なる登り方であることをわかることが基本です. 次に、 1段を使う方法は5が奇数であることから1回,3回, 5回のどれかです. そこで、1と2をいくつか使って, 和が5になる組合せを考えて,そのあと 入れかえを考えればよいことになります. (2)(イ)これがこの135のメインテーマで, 漸化式の有効な利用例です. 考え 方は,ポイントに書いてあるどちらかになります. この問題では, どちらで も漸化式が作れます. (ウ)漸化式が与えられたとき,一般項を求められることは大切ですが, 漸化 式の使い方の基本は番号を下げることです. as=a+a6 (α6+α5)+a6 参考 m =3a5+2a=3(α+α3) +2a4 =5a4+3a3=5(a3+α2) +3as =8a3+5a2=8(a₂+a1)+5a2 10219 13+84=13×2+8×1=34 (通り) IA 91 ポイント I. (ウ)の要領で α5 を求めると, αs=3a2+2a1=3×2+2=8 (通り)となり,(1)の答と一致します。 Ⅱ. 最後の手段に着目するときは,次の2つの場合となります. ① まず (n+1) 段登って、最後に1段登る ② まずn段登って、最後に2段登る ポイント 場合の数の問題で漸化式を作るとき,次のどちらか ① 最初の手段で場合分け ② 最後の手段で場合分け 第7章 解答 (1)5段の階段を登るとき, 1段登ることは奇数回必要だから, 1段を1回使う組合せは, 1段, 2段, 2段 3回使う組合せは, 1段, 1段, 1段2段 5回使う組合せは、 1段, 1段, 1段1段, 1段で 演習問題 135 横1列に並べられたn枚のカードに赤か青か黄のどれか1つの それぞれ,入れかえが3通り, 4通り、1通りあるので 3+4+1=8 (通り) (12,2)(2112)(2.2.1) (11.1.1) (2) (ア) 1段登る方法は1つしかないので, a=1 2段登る方法は,1段, 1段と, 2段の2通りあるので, a2=2 色をぬる. 赤が連続してはいけないという条件の下で,ぬり方が an 通りあるとする. (1) α1, 42 を求めよ. (2)n≧1 のとき, an+2 を an+1, an で表せ. (3) αg を求めよ.

回答募集中 回答数: 0
数学 高校生

この問題の2ページ目で、何故?と書いてある部分の解説をお願いいたします🙇🙏🙌 誤っている理由は方針を読めばわかるのですが、多い少ないの判断はどこからすればいいですか、? 進研模試IA19ページ

(4) 太郎さんと花子さんはこのデータを見ながら、自分たちの住んでいる町の気候 について話している。 数学Ⅰ 数学A 次の表は20枚の硬貨を投げる試行を1000回行ったときの表の出た枚数の 合である。 太郎: 自分たちの町では2月の平均気温は7℃で、8月の平均気温は27℃だそ うだよ。 表の枚数 0 1 2 3 45 6 7 89 割合(%) 0.0 0.0 0.0 0.1 0.4 1.6 3.7 7.5 11.9 16.1 花子:冬と夏の気温差が小さいんだね。 この町の人の多くは、 自分たちの町が 気候的に暮らしやすい町だと感じているんじゃないかな。 太郎:アンケートをとって確かめてみよう。 この町の人20人に,この町が気 候的に暮らしやすいと感じているかどうかをたずねたとき、 何人の人が 「暮らしやすいと感じている」と回答したら,この町全体で暮らしやす いと感じている人の方が暮らしやすいと感じていない人より多いとし てよいのかな。 花子 例えば15人だったらどうかな。 表の枚数 割合(%) 17.6 15.9 12.1 10 11 12 13 7.3 3.5 14 15 16 17 18 19 1.7 0.5 0.1 0.0 0.0 20 0.0 2.7 この表の値を用いると, 20枚の硬貨を投げて15枚以上が表となる割合は ハ ヒ %である。これを, 20人のうち15人以上が 「暮らしやすいと 「感じている」と回答する確率とみなし、 方針に従うと、「暮らしやすいと感じてい る」と回答する割合と 「暮らしやすいと感じている」と回答しない割合が等しい という仮説は フ この町は暮らしやすいと感じている人の方が暮らしやす いと感じていない人より 二人は, 20人のうち15人が暮らしやすいと感じている」と回答した場合に, 「自分たちの町では気候的に暮らしやすいと感じている人の方が暮らしやすいと 感じていない人より多い」といえるかどうかを, 次の方針で考えることにした。 方針 "自分たちの町に住んでいる人全体のうちで「暮らしやすいと感じている」と 回答する割合と「暮らしやすいと感じている」と回答しない割合が等しい” という仮説をたてる。 この仮説のもとで, 20人抽出したうちの15人以上が 「暮らしやすいと感じ 「ている」と回答する確率が5%未満であれば仮説は誤っていると判断し, 5% 以上であれば仮説は誤っているとは判断しない。 フ の解答群 誤っていると判断され ① 誤っているとは判断されず 群 ⑩多いといえる 多いとはいえない (数学Ⅰ. 数学A第2問は次ページに続く。)

回答募集中 回答数: 0