学年

教科

質問の種類

数学 高校生

下の問題を二枚目の写真のように解きました。 このやり方だと,XとYの値が求めれなかったのですが,求め方はありますか? また,解説のように解く方がいいですか?

その 基本 89 した 00000 実数x,yx+y2=2を満たすとき, 2x+yのとりうる値の最大値と最小値を 求めよ。 また、そのときのx,yの値を求めよ。 指針 [類 南山大 ] 基本101 条件式は文字を減らす方針でいきたいが,条件式x2+y2=2から文 字を減らしても2x+yはx,yについての1次式であるからうま くいかない。 そこで, 2x+y=t とおき,tのとりうる値の範囲を調べることで, 最大値と最小値を求める。 ← 2x+y=t を y=t-2x と変形し,x2+y2=2に代入してyを消 去すると x2+(t-2x) =2となり,xの2次方程式になる。 xは実数であるから,この方程式が実数解をもつ条件を利用する。 実数解をもつ⇔D≧0 の利用。 見方をかっ CHART 最大 最小 =tとおいて,実数解をもつ条件利用 20 2x+y=t とおくと y=t-2x ① 解答 これをx2+y2=2に代入すると したがって x2+(t-2x)=2 整理すると 次 5x2 -4tx+t2-2=0 自去す このxについての2次方程式 ② が実数解をもつための 条件は、②の判別式をDとすると (+)=S+ツの不等式)。 (2) D≧0 ここで D=(2t)-5(2-2)=-(t-10) D≧0から 参考実数a, b, x, yに ついて,次の不等式が成り 立つ (コーシー・シュワル CONCE(ax+by)≤(a+b)(x²+ y²) [等号成立は ay=bx ] この不等式に a=2,6=1 (を代入することで解くこと できる。 t2-10≤0 フェ これを解いて -√10 ≤t≤√10 t=±√10 のとき, D=0で,②は重解 x=- -4t_2t を のとき②は t=±√10 2.5 5 もつ。=±√10 のとき x=± 2/10 よって 5x2+4√10x+8=0 よってまたは 5 /10 ①から y=± (複号同順) 5 よって x= 2/10 10 y= のとき最大値10 主 ゆえに 2√2 2/10 x=± =土・ 5 √ 10 5 ” 5 2/10 √10 x=- 5 " y=- のとき最小値√10 √5 ①からy=土- 5 (複号同順) 5 としてもよい。 である。 たすとき の

解決済み 回答数: 1
数学 高校生

青の四角で囲んだ部分はどこから来たのですか?? 1つ上の式に√2/2をかけるところまでは理解出来たのですが、青四角の部分は何が起こったのかどなたかわかる方教えてください!!🙇‍♀️

DO 基本 例題 137 2次同次式の最大・最小 000 Yami sincos0 +2con" (002)の最大値と最小値を求めよ。 CHART I sin と cos & SOLUTION の2次式角を20 に直して合成 1-cos 20 2 sin20= L半角の公式 基本135 MOITUJO ZA TRAHD sin20 sinOcos0= 2 cos20= 1+cos 20 2 L2倍角の公式 半角の公式 これらの公式を用いると, sino, costの2次の同次式 (どの項も次数が同じである式) は 20の三角関数で表される。(は) 更に、三角関数の合成を使って, = psin (20+α) +α の形に変形し, sin (20+α) のとり うる値の範囲を求める。 08000nia S-0 200+(nie S-1aiz L の質は一般から f(0)=sin'0+sinOcos0+2cos2d 1-cos 20 sin 20 == 2 ・+2・・ 1+ cos 20 8=24 mie sind, cose の2次の同 次式。 0 _1 2 (は2とな 3 -1/2 (sin20+cos20) + 22 2 sin (20+4)+3 (1,1) 1H OS nie-08 π 02054 sin 20, cos 20で表す。 sin 20 と cos 20 の和 合成 4章 17 加法定理 π 1 x 0≤0≤ であるから 2 30 YA S ≤20+ 4 4 4 π 5 の糖 範囲に共 π かめられる。 よって1ssin(20+4) 1 14 -1 1x AX 3+√2 ゆえに 1≤f(0)≤ この 2 ? a+r したがって,f(8) は 各辺にを掛けて √2 I> sin(20+4) √2 2 を開く! くには? 20+ π TC πC 4 2 すなわち = で最大値 120 8 π = 4 5 20+ 2 すなわち =1で最小値1をとる。 4 この各辺に22を加える。 ・利用して、右辺をsio 3+√2 2

解決済み 回答数: 1