学年

教科

質問の種類

数学 高校生

写真の質問に答えてください!

産率と漸化 発展 例題 102 基礎例題 900000 1個のさいころを繰り返し投げ, 3の倍数の目が出る回数を数える。 今, ぃころをn回投げるとき、3の倍数の目が奇数回出る確率を とする。 (1) Pots を で表せ。 CHART GUIDE (2) n式で表せ。 確率の問題 [中央大〕 だから、3の倍数以外の 2回目と(n+1)回目に注目して漸化式を作ろ (1)回投げて3の倍数の目が奇数回出るとき、 次の2つの場合がある。 [1] n回目までに3の倍数の目が奇数回出て, (n+1)回目に3の倍数以外の目が出る。 [2] n回目までに3の倍数の目が偶数回出て, (n+1) 回目に3の倍数の目が出る。 目は1-9になると 3章 いいますが、 回目 (n+1)回目 発 展 P1 学 13の倍数以外 D [2] 3の倍数 なぜが 3の倍数の確率に 3の倍数は36の2つ 解答 2 さいころを1回投げて、3の倍数の目が出る確率は 1 6 さいころを (n+1) 回投げて3の倍数の目が奇数回出るのは、 次の2つの場合がある。 3なるのでしょうか? [ 7回目までに3の倍数の目が奇数回出て,(n+1)回目に[1]の確率×(1-1) 13の倍数以外の目が出る場合 [2] n回目までに3の倍数の目が偶数回出て, (n+1) 回目に [2]の確率(1-PJx13 3の倍数の目が出る場合 [1] [2] は互いに排反であるから Pat Q (1)から =(1/2)+(1-12×1/2=1/01/1 ゆえに、数列 pt1 Pan-1 2 3 (P-1) 数列{po-1-12 は公比/1/3の等比数列で、初項は 1 1 1 一 3 ゆえに 102 Pa 2 6 =

未解決 回答数: 0
数学 高校生

写真の質問に答えてください!

64 発展例題 |2次方程式x-mx+2m=0 が整数解のみをもつような定数mの値と,そ のときの整数解をすべて求めよ。 方程式の整数解 (=整数の形にする ① 2つの整数解を α, β (α≦β) として、 解と係数の関係を利用。 α+β=m, aβ=2m ②①の2式からmを消去し, ()() =整数の形を導く。 ③②で導いた式を,右辺の整数の約数を考える方法で解く。 4,B,Cが整数のとき, AB=C ならば A,BはCの約数 CHART GUIDE 解答 2次方程式x-mx+2=0が2つの整数解 α, β(a≦B) を | ←α=β のときは,重解を もっとすると、解と係数の関係から α+β=m, aβ=2m もつ。 を消去すると aß-2a-28-0 22 から ゆえに すなわち ...... aβ=2(a+β) a(B-2)-2(B-2)-4=0 (a-2)(B-2)=4 よって Bは整数であるから,α-2, β-2 も整数である。 より、α-2≦B-2 であるから,α-2, B-2 の値の組は (a-2,B2, -2,-2),(1,4), (22) ですか? ist (a, B)=(-2.4.2009 このα, βの値の組に対するmの値は、①からそれぞれ m=-1, 0,9,8 したがって求める の値とそのときの整数解は m=-1 のとき x=-2, 1 m=0 のとき x=0 m=8のとき x=4 m=9のときx=3,6 ←mも整数である。 ←一般にxy+ax+by =(x+b)(y+α)-ab 左の変形では, x=α, y=β, a=-2,b=-2 としている。 ←4の約数は 2章 ←m=a+β ±1, ±2, ±4 負の数も忘れないように。 発展学習 ←m=0,8のときは重解。 2次方程式の整数解を求める問題の中には, 「整数解ならば実数解であるから,判別式 D≧0」によって,係数の値の範囲をしぼり込んでいく考え方が有効な場合もある。 ただし、上の例題では, 判別式 D=(-m)²-4・2m≧0から m≧0,8≦m となり, [mの値をしぼり込むことはできない。 ] 64 2次方程式x+(m-2)x+10-m=0が整数解のみをもつような定数 m の値

未解決 回答数: 1
数学 高校生

写真の質問に答えてください!

確率変数の期待値,分散,標準偏差 発展例題 12400 基礎 例題 105 から6までの番号をつけてある6枚のカードがある。 この中から2枚のカ コードを同時に引くとき, 引いたカードの番号の大きい方をXとする。 この とき、次のものを求めよ。 (1) Xの期待値 CHARI & GUIDE 確率変数 X の期待値,分散,標準偏差 E(X)=2xp. V(X)=E(X²)—{E(X)}², 0(X)=√V(X) まず、Xのとりうる値を求める。 X=1 はあり得ないから、Xの確率分布(X=2, 3. 4,5,6) を求める。なお, 番号 Xは整数であるが, 期待値や分散は整数になるとは 限らない。 1 E(X)=2+3+4+ 15 解答 6枚のカードから2枚を引く方法は全部で C2 = 15 (通り) (1)X=k(kは整数で2≦k≦6) のとき, 1枚は番号がんのカー ドで残りは (k-1) 枚 から1枚選ぶから Xの 確率分布は右の表のよう になる。 よって, Xの期待値は 15 (2) (1) から Xの分散は V(X)=E(X)-(E(X))^ -70 196 14 9 3 9 (3) (2) から Xの標準偏差は a(X)=√V(X)=₁ (2) Xの分散 EX 105 V 9 X P - √14 3 2 3 1 15 456 15 2 (3) Xの標準偏差 4315 +6· 5 6 計 15 15 15 15 || - (2²-½ + 3³²- ²/5 + 4²² ³35 +5² +53 +6²-)-(¹) 2 +3².. 4 15 15 15 15 4 5 5 70 14 15 15 3 1 (2) V(X)=E((X-m)) で求めると、次のように 計算が大変になる。 v(x)=(2-1)³.5 +(3-14). /1/2 COLT +(5-1) ²1/1 · (64+50+12 135 +4+80) 210 14 =1/4 135 率定数aX+bの期待値, 分散 例 106 例題 X を確率変数, a, bを定数とする。 Xの分散 V (X) と αX + b の分散 ▲発展例題 123① (X+6) においてV(aX+b)=²V (X) が成り立つことを証明せよ。 (②) 赤玉3個と白玉2個の入った袋から, 3個の玉を同時に取り出すとき, 3 のうちの赤玉の個数をXとする。 このとき, 確率変数 2X +3 の期待値 と分散を求めよ。 2個のさいころを同時に投げるとき 出た目の小さい方をXとする。 こ the CHART 確率変数aX+bの期待値,分散 E(aX+b)=aE(X)+b, V(aX+b)=a²V(X) (1) E(X)=m とすると 分散の定義F(X)=E((X-m)") を利用。 (2) まず, Xの確率分布を求め, E(X) と V(X)を計算する。 GUIDE E(X)=mとすると E(ax+b)=aE(X)+b=am+b よって V(ax+b)=E({(ax+b)(am+b)}}) = E((aX-am)²)=E(a²(X-m)²¹) =a²E((X-m)²) =a²V(X) E(aX+b)=am+b Xのとりうる値は 1 2 3 である。 CX2C23 P(X=1)= = 5C3 10 3C3 1 5C3 10 P(X=2)=3C2X2C1 6 P(X=3)= よって,Xの確率分布は右の表の ようになる。 ELX)=1+30 +2.00 +3-10-18 - 23/0 6 9 +3・ 10 5 X 1 2 3 計 3 6 1 P 10 10 10 ゆえに 一致しないけど、(2x+3)=2F(X)+5=2 5 どこが間違ってますかそx)=4. 9 25 SC3 9 18 v(x)= (1²• 10 V(X)-(1³.36 +2³.5+3². 1)-(2)²-½-( ? ) - ² 6 10 36 25 1 33 -V(X)=E((X-m (変数)(確率 7 v(x)=E√(x-m³²² aE 本当にそうなるか知りたい から105の問題の数を 代入したら. -V(X)=E(X¹3(EX) 4章 x=3のとき V(3)-143-447 488 orq 20 14(2714) 44.43 -V(2XV +3" とるな 確率変数の期待値と分散

未解決 回答数: 0
数学 高校生

18.2 2乗した結果プラスだから成り立つという方法で |a|-|b|≦|a+b|を証明することはできないのですか??2枚目の文末のところで詰まってしまいました...

161.638 重要 例題18 ベクトルの不等式の証明 (1) 次の不等式を証明せよ。 (1) - Ta|||≤a·b≤|||b1 (2) á-16|≤|a+b|slál +16 指針 (1) 内積の定義 α・6=|a|||cose (0は、ものなす角)において、-1≦cos0≦1で あることを利用。 ベクトルの大きさについて | ≧0であることに注意する。 (2) まず,la+6sla|+|6|を示す。 左辺,右辺とも0以上であるから, A≧0, B≧0のとき ASB⇔A'S B 解答 (1) [1] = 0 または 1 = 0 のとき 10 ||||=0 であるから であることを利用し, a+ (+16|) を示す。 (右辺) (左辺)≧0 を示す過程で は, (1) の結果も利用する。 SIGNS 次に,|a|-||≦a +6 の証明については、先に示した不等式 | + 64 +6 | を利 用する。 |-|||8|=1.6=||||= 0 400051-381-1015) [2] a≠0 かつ 0のとき a 1のなす角を0とすると to Talar) o-15-4 er a-b=la|lb|cos 0 0°≦0≦180°より,-1≦cos0 ≦1であるから -|a|||sa||b|cos 0≤|a||| ①から -|à||b|≤a·b≤|a||0| [1], [2] 5-lä||b|≤ä·b≤ä||b| (2) (a+b)²-ã+61² COS =|+2|a||| +-(+20+16) =2 (6) 20 ゆえに là tôi s lả tả lài trời 20, là tôi 2005 kot ゆえに ②③ から la+b|slál + |b1...... @ ②において,aをa+6,方を一方におき換えると |ã+b-|≤|ã+b| +1-61 lä|≤|ã+b|+|b| la|-|6|≤|a+b1 0000 la|-|b|≤|a+b|≤|ä1+1b1 p.399 基本事項 ① (1) d=0のとき, 明ら かに成り立つ。 ¥0 のとき a +6 ≧0 すなわち t²la²+2ta 6+16²20 はすべての実数tについて成 り立つから, (A の左辺) = 0 の判別式をDとすると, la >0 より D≦0 2=(a-6²-16から 4 -|a||b|≤a·b≤|a||b|| Spider 0 (検討) la +6 | <|a|+|6|は三角形 における性質 「2辺の長さの 和は、他の1辺の長さより大 きい」 (数学A) をベクトル で表現したものである。 B 1612 a+b A b a |a+b|<|a|+|b1 OB<OA+AB 409 1章 3 ベクトルの内積

未解決 回答数: 0
数学 高校生

2.1 解き方ってこれでも問題ないですよね??

作り の符号で特 を考える とみ を図示 -26 28 2を買 同じ、 2倍 解答 内の 点 (1) AB+EC+FD-(EB+FC+AD) =AB+EC+FD-EB-FC-AD =(AB+BE)+(EC+CF)+(FD+DA) =AE+EF+FA=AF+FA kit. 基本例題2 ベクトルの等式の証明, ベクトルの演算 (1) 次の等式が成り立つことを証明せよ。 AB+EC+FD=EB+FC+AD 3倍 指針 (1) ベクトルの等式の証明は、通常の等式の証明と同 じ要領で行う。 ここでは, (左辺) - (右辺) を変形し て=0 となることを示す。 (2) (ア) x=2a-36-c, y=-4a+56-3C のとき, ya, b,こで表せ。 (イ) 4-3a=x+66 を満たすxをaで表せ。 (3x+y=d, 5x+2y=を満たす,をもで表せ。 を利用するこ 合成 P□+□=PQ, P=PQ ベクトルの計算では,右の変形がポイントとなる。 分割PQ=P+ℓ, (2) ベクトルの加法,減法,実数倍については,数式PQ=Q-□P と同じような計算法則が成り立つ。 向き変え PQ=-QP PP=0・・・ 同じ文字が並ぶと (ア) x=2a-36-c, y=-4a+56-3cのとき, の安心 x-yをa,b,c で表す要領で。 (イ) 方程式 4x-3a=x+66 (ウ) 連立方程式 3x+y=a, 5x+2y=b を解く要領で。 =AA=0 ゆえに AB+EC+FD=EB+FC+AD (2) (7) x−y=(2a-36−č) − (−4ã+5b−3c) =2a-36-c+4a-5b+3c =6a-8b+2c (イ) 4x3x+65から 4x-x=3a+65 よって ゆえに 3x=3a+66 x=a+2b Bi (1) 3x+y=a.. ① x2-② から これを①に代入して 6a-3b+y=a よって 1, 5x+2y=6 =2ab y=-5d+36 00000 ② とする。 CA 384 基本事項 ②③ ... CIDE 左辺(右辺) Sa+da+ sa 向き変えEB=BE など。 合成AB+BE = AÉ など。 検討 A□+□△+△A=0 (しりとりで戻れば ① ) この変形も役立つ。 ただし, それぞれ同じ点。 なお,00と書き間違えな いように。 両辺を3で割る。 6x+2y=2a 1-) 5x+2y=6 x =2a-b 387 1章 ベクトルの演算

回答募集中 回答数: 0