数学
高校生

写真の質問に答えてください!

64 発展例題 |2次方程式x-mx+2m=0 が整数解のみをもつような定数mの値と,そ のときの整数解をすべて求めよ。 方程式の整数解 (=整数の形にする ① 2つの整数解を α, β (α≦β) として、 解と係数の関係を利用。 α+β=m, aβ=2m ②①の2式からmを消去し, ()() =整数の形を導く。 ③②で導いた式を,右辺の整数の約数を考える方法で解く。 4,B,Cが整数のとき, AB=C ならば A,BはCの約数 CHART GUIDE 解答 2次方程式x-mx+2=0が2つの整数解 α, β(a≦B) を | ←α=β のときは,重解を もっとすると、解と係数の関係から α+β=m, aβ=2m もつ。 を消去すると aß-2a-28-0 22 から ゆえに すなわち ...... aβ=2(a+β) a(B-2)-2(B-2)-4=0 (a-2)(B-2)=4 よって Bは整数であるから,α-2, β-2 も整数である。 より、α-2≦B-2 であるから,α-2, B-2 の値の組は (a-2,B2, -2,-2),(1,4), (22) ですか? ist (a, B)=(-2.4.2009 このα, βの値の組に対するmの値は、①からそれぞれ m=-1, 0,9,8 したがって求める の値とそのときの整数解は m=-1 のとき x=-2, 1 m=0 のとき x=0 m=8のとき x=4 m=9のときx=3,6 ←mも整数である。 ←一般にxy+ax+by =(x+b)(y+α)-ab 左の変形では, x=α, y=β, a=-2,b=-2 としている。 ←4の約数は 2章 ←m=a+β ±1, ±2, ±4 負の数も忘れないように。 発展学習 ←m=0,8のときは重解。 2次方程式の整数解を求める問題の中には, 「整数解ならば実数解であるから,判別式 D≧0」によって,係数の値の範囲をしぼり込んでいく考え方が有効な場合もある。 ただし、上の例題では, 判別式 D=(-m)²-4・2m≧0から m≧0,8≦m となり, [mの値をしぼり込むことはできない。 ] 64 2次方程式x+(m-2)x+10-m=0が整数解のみをもつような定数 m の値

回答

1行目でそう設定したからです

設定した理由
「α-2とβ-2が掛けて4」から
α-2とβ-2の組が出てきますが、
αとβに大小関係を設定しておくと、組が少なく済みます
設定しないとたくさん出てくるので大変です
設定しなくてもいいですが大変です

設定できる理由は、
そう設定しても特に支障がないからです
(何かの条件に反するとか)

みこと

なるほど!分かりました!ありがとうございます!

この回答にコメントする
疑問は解決しましたか?