数学
高校生

写真の質問に答えてください!

産率と漸化 発展 例題 102 基礎例題 900000 1個のさいころを繰り返し投げ, 3の倍数の目が出る回数を数える。 今, ぃころをn回投げるとき、3の倍数の目が奇数回出る確率を とする。 (1) Pots を で表せ。 CHART GUIDE (2) n式で表せ。 確率の問題 [中央大〕 だから、3の倍数以外の 2回目と(n+1)回目に注目して漸化式を作ろ (1)回投げて3の倍数の目が奇数回出るとき、 次の2つの場合がある。 [1] n回目までに3の倍数の目が奇数回出て, (n+1)回目に3の倍数以外の目が出る。 [2] n回目までに3の倍数の目が偶数回出て, (n+1) 回目に3の倍数の目が出る。 目は1-9になると 3章 いいますが、 回目 (n+1)回目 発 展 P1 学 13の倍数以外 D [2] 3の倍数 なぜが 3の倍数の確率に 3の倍数は36の2つ 解答 2 さいころを1回投げて、3の倍数の目が出る確率は 1 6 さいころを (n+1) 回投げて3の倍数の目が奇数回出るのは、 次の2つの場合がある。 3なるのでしょうか? [ 7回目までに3の倍数の目が奇数回出て,(n+1)回目に[1]の確率×(1-1) 13の倍数以外の目が出る場合 [2] n回目までに3の倍数の目が偶数回出て, (n+1) 回目に [2]の確率(1-PJx13 3の倍数の目が出る場合 [1] [2] は互いに排反であるから Pat Q (1)から =(1/2)+(1-12×1/2=1/01/1 ゆえに、数列 pt1 Pan-1 2 3 (P-1) 数列{po-1-12 は公比/1/3の等比数列で、初項は 1 1 1 一 3 ゆえに 102 Pa 2 6 =

回答

まだ回答がありません。

疑問は解決しましたか?