学年

教科

質問の種類

数学 高校生

なぜπ/6が√3/3になるのかが分かりません 赤で囲った部分のことです

D M ★★☆☆ 例題 153 2直線のなす角 2直線 3xy0 ... ① 2x+y-4=0 ② について (1) 2直線のなす角0 (0≧≦o)を求めよ。 (2) 直線 ①との角をなし、原点を通る直線の方程式を求めよ。 ReAction 2直線のなす角は, tan0 = (傾き) を利用せよ IA 例題132 思考プロセス (1) 直線 ①とx軸の正の向きのなす角を 0, 直線②とx軸の正の向きのなす角を02 001, 02 の関係は 0 tand, tan02 (2) 図をかく 条件 を満たす直線は, 右の図のように2本ある。 Action» 2直線のなす角0は, tan の加法定理を利用せよ 解 (1) ① ② がx軸の正の向きとなす角をそれぞれ 01, 02 と tanQ=3, tand2=2 すると 002-01 であるから tane = tan(02-01) tang – tan. 1+tan O2tan01 -2-3 = 1 1+(-2)・3 直線 y=mx+kがx軸 の正の向きとなす角を 0(0≦0π)とすると m=tan0 y=mx+k 2 yea 4001200 102 01 ( 01 _02 交点を通るx軸に平行な 直線を引き, 同位角を考 0 2x える。 30 π より 0 = π 4 (2) 求める直線がx軸の正の向きと y π なす角は 01 土 である。 6 6+5√3 tan (+) 3 tan (6-6)=-6+5√3 3 よって、 求める直線は,原点を通るから tan(+)- 3- tan(0,-)- 6+5√3 y = -6+5√3 3+ 3 = 1-3. www/www/www/w 3 √3 3 3 1+3・ 3 3 -x, y= X 3 原点を通るから、切片 は0である。 123 (1) 練習 1532 直線 x-2y=0 ... ①, x+3y-6=0 ② について ... (1) 2直線のなす角00≧6 0≧≦1) を求めよ。と π 2 (2)直線 ①との角をなし,原点を通る直線の方程式を求めよ。 p.310 問題

解決済み 回答数: 1
数学 高校生

図形と方程式の問題です (3)の色の着けたところがよく分かりません。点Pの1つが点Aであるのは何故ですか?解説読んでも分かりませんでした。

頂き を の 部 Y4 図形と方程式 (50点) 0を原点とする座標平面上に, 中心が点 (3, 1) でx軸に接する円Cがある。また、原 点からに引いた接線のうち,傾きが正であるものをとし,Cとlの接点をAとする。 (1) Cの方程式を求めよ。 (2) lの方程式を求めよ。 (3)は,中心がy軸上にあり,点AでCとlに接している。 Dの方程式を求めよ。ま 点PはD上の点であり, OP =3を満たしている。点Pの座標を求めよ。 配点 (1) 10点 (2) 18点 (3) 22点 解答 (1) Cの中心が点 (31) であり, Cはx軸に接するから,Cの半径は, C の中心のy座標に等しく, 1である。 x軸に接する円の半径は、円の 心のy座標の絶対値に等しい。 したがって, Cの方程式は (x-3)2+(v-1)2=1 圏 (x-3)2 +(x-1)²=1 (2) 解法の糸口 Cとl が接することを, 2次方程式が重解をもつ条件に読み替えて考える。 lは原点を通る傾きが正の直線であるから,その方程式は y=mx(m>0) と表される。 C と l が接するとき,これらの方程式からyを消去して得られるxの2次 方程式 (x-3)2+(mx-1)=1 は重解をもつ。 ①を整理すると (x2-6x+9)+(m2x2-2mx+1)=1 (m²+1)x2-2(m+3)x+9=0 ①'の判別式をDとすると2=0であり D 121=(m+3)2-9(m2+1)= 0 -8m²+6m=0 -2m (4m-3)=0 3 m = 0. 4 3 m>0より m = 4 したがって、lの方程式は y= [(2)の別解〕 (3行目まで本解と同じ) 3-4 3 y=x NA A ROS C EL 10 3 x ◆円と直線の方程式からyを消去し て得られるxの2次方程式を ax2+bx+c=0 とし、その判別式をDとすると, D=62-4ac であり 円と直線が接する ← 2次方程式が重解をもつ ⇔D=0 D また,b=26' のとき 1241=b2-ac

解決済み 回答数: 1