学年

教科

質問の種類

数学 高校生

38.2 正しい解き方も理解できたのですが、 自分の間違った解き方のどこが間違っているのかわかりません。また自分の考え方としては、最初12個の中から1つ選ぶ(12通り)、一つ目に例えばA1を引くと1以外を引く必要があるので9通り。2つ目にB2を引くとすると残りは3の札3枚と... 続きを読む

360 00000 ... 基本例題 38 確率の計算 (3) ・・・ 組合せの利用 | 赤, 青, 黄の札が4枚ずつあり, どの色の札にも1から4までの番号が1つずつ 書かれている。この12枚の札から無作為に3枚取り出したとき,次のことが起 105 こる確率を求めよ。 (AU (1) 全部同じ色になる。 (2) 番号が全部異なる。 指針 場合の総数Nは, 全12枚の札から3枚を選ぶ 組合せ で 12C3通り (1)~(3) の各事象が起こる場合の数 α は, 次のようにして求める。 (1)(同じ色の選び方) × (番号の取り出し方)の法則 ... (2) (異なる3つの番号の取り出し方) × (色の選び方) ・・・ 同色でもよい。 (3) (異なる3つの番号の取り出し方) (3つの番号の色の選び方) 取り出した3つの番号を小さい順に並べ, それに対し, 3色を順に対 応させる,と考えると, 取り出した番号1組について, 色の対応が 3P3通りある。 解答 12枚の札から3枚の札を取り出す方法は 2C3通り C通り 4C3 通り (1) 赤,青, 黄のどの色が同じになるかが その色について,どの番号を取り出すかが 3C1×4C3_3×4 3 ゆえに、求める確率は 12C3 220 55 (2)どの3つの番号を取り出すかが 4C3通り そのおのおのに対して, 色の選び方は3通りずつあるから, 番号が全部異なる場合は 4C3×33 通り 4C3×33 12C3 220 4×27 27 練習 (3) 3 38 枚の札を選ぶとき ゆえに, 求める確率は 55 (3)どの3つの番号を取り出すかが 4 C3通りあり, 取り出した 3つの番号の色の選び方が 3P 3通りあるから、色も番号も全 部異なる場合は 4C3×3 P3 通り ゆえに, 求める確率は 4C3X3P3 4×6 12C3 220 [埼玉医大) (3) 色も番号も全部異なる。 p.356 基本事項 = 6 55 123 赤青 赤黄 青 赤 青黄 青黄赤青赤 黄赤青 黄青赤 P通 検討 (1)札を選ぶ順序にも注目し、 N=12P3=12C3×3!, a = 3C1×4C3×3! と考える と a 3C1X4C3 となり、 12C3 左の解答の式と一致する。 3つの番号それぞれに対し、 3つずつ色が選べるから 3×3×3=33 043 0$ 赤,青,黄の3色に対し、 1,2,3,4から3つの数を 選んで対応させる,と考え て, 1×,P3通りとしてもよ い。 1組のトランプの絵札 (ジャック, クイーン, キング) 合計12枚の中から任意に Joe (1) スペード, ハート, ダイヤ, クラブの4種類の札が選ばれる確率を求めよ。 CLON (2) ジャック, クイーン,キングの札が選ばれる確率を求めよ。 (3) スペード, ハート, ダイヤ, クラブの4種類の札が選ばれ,かつジャック, ク イーン, キングの札が選ばれる確率を求めよ。 [北海学園大] 20

未解決 回答数: 0
数学 高校生

(ⅲ)の解説の前半の下から2行目「ただ一つだけ存在する」の意味がよく分からないのでどういうことか説明して頂きたいです💦

21 辺の長さの変化と三角比 (1) BC=2√/3 のとき、 △ABCにおいて, 余弦定理により (2√3)=AB2+4²-2・AB・4cos60° AB-4AB+4=0 (AB-2)² = 0 よって AB = '2 この AB+BC" = ACA が成り立つから、△ABCは∠B=90°の直角三角形 (①) である。1 (ii) BC=4 のとき, AC=BC=4 であるから △ABCは∠Cを頂角 とする二等辺三角形である。 よって, 底角は等しく∠A=∠B=60° である。このとき, ∠C=180° ∠A-∠B=60° である。 △ABC はすべての内角が 60° であるから, AB=BC=CA=4 の正三角 形 (⑩) である。 ( BC=2√3 のときと, BC4 のときを図示すると図1のように なる。 BCの長さをaとする。 2√3より大きく4より小さい値を考え, 点Cを中心として半径aの円をかくと, 図2のように直線ℓと2点 で交わり、このとき, 合同でない △ABCが2つ存在する (△AB,C, △ABC)。 0<a<2√3 となる △ABC は存在せず,a>4となる△ABCは ただ1つだけ存在するから,2√3 <a < 4 を満たす値を考え, BC=√15 (②) が適当である。 図1 60° 2√3 x sin ∠B よって ∠ABC=180°∠ABC したがって AC BC sin ZB sin ZA 4 B A B B2 図2において, △CB1 B2 は CB1 = CB2 の二等辺三角形であるから ∠CB1 B2=∠CB2 B1 (2) △ABCにおいて, 正弦定理により 7 sin 40° よって sin <B= B sin∠ABC = sin (180°∠AB2C) = sin ∠AB2C (①) cos∠ABC=cos (180° AB2C) =-cos∠AB2C (③) Point 図2 sin 40° 7 x C 2√3 37 ←B C A 2²+2√3)=4' である。 AB: AC:BC=1:2:√3 である ことからも, 直角三角形である ことがわかる。 ingr B (C 図形と計量 sin (180°-0) = sin0 cos (180°-0) = -cos (

回答募集中 回答数: 0
数学 高校生

50が分かりません。 中点を求めるところまでは分かります。 L(0.0)M(a+c/2,b/2)N(a-c/2,b/2)までは分かります。 Mは(a+c/2,b/2)なのに、なぜBMは、-c+2(a+c/2)/2+1にならず、-c+(a+c)/2+1になるんですか?

基本事項6 (x2,32) AB 。 の中点となるようなaの値を求めよ。 座標平面上の3点A(-2, 5), B(-3,-2), C(3,0) がある。 (2) ∠ABCの二等分線と直線 AC との交点Pの座標を求めよ。 (1) 線分AB, BCの長さをそれぞれ求めよ。 (2) △ABCにおいて, 2AB' < (2+AC2)(2+BC2) が成り立つことを示せ。 50 (1) △ABCの3つの中線は1点で交わることを証明せよ。 1に内分する点 HINT 48 点 C, D の座標をそれぞれαで表す。 ミ [類 弘前大] →72.75 31 次の条件を満たす三角形の頂点の座標を求めよ。 (1)各辺の中点の座標が (1,-1),(2,4),(3, 1) (2)1辺の長さが2の正三角形で,1つの頂点がx軸上にあり,その重心は原点に 一致する。 - →75 P1年0年3 牛 それぞれ2:1に内分する点の座標をα, b, c で表す。 (2) 直線 AB をx軸にとり、点Cをy軸上にとると、計算がらく。 (2) 山形大 ] 52 3点A(a1,a2), B(b1, 62), C(C1, C2) を頂点とする △ABCにおいて、辺BC, CA, AB を m: n に内分する点をそれぞれ D, E, F とする。 ただし, m>0, n0 とする。 (1)3点D, E,Fの座標をそれぞれ求めよ。 (2) △DEF の重心と△ABCの重心は一致することを示せ。 na+mbi na₂+mb₂ m+n m+n →74 49 (2)角の二等分線の定理 AP: PC=AB: BC を使う。 50 (1) 直線BC をx軸にとり, A(α, b),B(-c, 0), C(c, 0) とする。次に、3つの中線を 51 (2)頂点の座標は、(a,0),1), (b,-1) とおける。 52 (1) 2点A(a, az, B(by, ba) を結ぶ線分 AB を minに内分する点の座標は →75 3章 2直線上の点、平面上の点

未解決 回答数: 0