学年

教科

質問の種類

数学 高校生

教えてください🙏全然わかりません

(5)生細胞をつくるときに起こる染色体 を何というか。 (6) 体細胞で見られる同形同大の染色体を何というか。 (5) (6) ける。次に、1本 型となる1本鎮・ それぞれ DNA (2)複製(DNA 複製) (3)半保存的複製 (4) 体細胞分裂 (5)減数分裂 (6)相同染色体 例題 10 DNA の複製 つくられ、2組 列と全く同じに [アされた! べて同じ遺伝 59 DNAの 窒素源と 素 窒素源となる窒素化合物に重い窒素(N) のみを含む培地で,大腸菌を何世代にもわたっ て培養し、DNAの窒素がすべて『Nに置き換わった大腸菌を得た。この大腸菌を窒素て培養し, として軽い窒素 (''N) のみを含む培地に移して培養した。 'Nのみを含む培地に移して から3回目の分裂を終えた大腸菌からDNAを抽出し 質量の違いで分離した。 (1) 実験の結果,どのような重さのDNAがどのような比で分離されるか。 〔重い DNA] [中間の重さのDNA〕 〔軽いDNA] の比として適当なものを、次から1つ選べ。 10:1:1 20:1:3 ③ 0:17 5 1:6:1 ⑥ 3:1:0 7 7:1:0 ④ 1:2:1 (2)このような実験から分かった DNA の複製様式を何というか。 (1) Nのみ うな重 (軽い I ① 0: ⑤ 1: (2)この ① 解説 細胞分裂の前にはDNAの複製が行われる。 複製の際には、2本鎖 DNA がほどけて1本鎖となり、それぞれを鋳型に相補的な塩基配列を もつ新しい鎖が合成される (半保存的複製)。 RDNA 世代では、2本鎖DNAのどちらの鎖も『Nを含むので、重いDNA のみが観察される。 1回目の複製では, IN を含む鎖を鋳型に, 'N を含 む鎖が新しく合成される。そのため1代目では、2本鎖DNAの片方が HN, もう片方が『Nの中間型のDNA のみが現れる。 2回目の複製では、 IN を含む鎖型として複製された中間型 DNA が2本, 'N を含む を鋳型として複製された両方が 'Nのみを含む軽い DNAが2本できる。 同様に考えて、3回目の複製では中間型 DNAが2本, 軽いDNAが6 日本できるため、比は [重い〕 〔中間〕〔軽い〕 0:13 となる。 60 1代目DNA に の 2代目 DNA 答 (1) ② (2)半保存的複製

回答募集中 回答数: 0
数学 高校生

(4)がよくわからないです。 あと、それぞれの問題の条件違いによって、解くときに何が変わるかわからないです。

赤、青、黄、緑の4色のカードが5枚ずつあり、各色のカードに 1から5までの数字が1つずつかいてある. これら20枚のカー ドから3枚を同時にとりだすとき,次の問いに答えよ. (1) とりだし方の総数をNとするとき,Nを求めよ. (2)3枚とも同じ番号になる確率P を求めよ. (3)3枚のカードのうち,赤いカードが1枚だけになる確率 P を求めよ. (4)3枚とも色も数字も異なる確率 P3 を求めよ. 精講 1枚のカードは色と数字の2つの役割をもっていますが,(2)では香 だけ,(3)では色だけがテーマになっています。 だから,では,1,2,3,4,5とかいたカードがそれぞれ4枚ず つある」と読みかえて, (3)では 「赤が5枚, 赤以外が15枚ある」と読みかえま す.もちろん,(4)では,色と数字を両方考えますが,一度に2つのことを考え にくければ ①まず, 色を選ぶ ②色が決まったところで, その色に数字を割りあてる と2段階で考えればよいでしょう。 (1)20枚の中から3枚をとりだすので、 20.19.18 N=20C3= =20・19・3=1140 3.2 (2)1,2,3,4,5とかいたカードが4枚ずつあるので3枚とも同じ番号 になるのは, 5×4C3=20 (通り) 201 P₁= N57 【数字1を3枚選ぶ方 法は3通り (3) 5枚の赤から1枚, 15枚の赤以外から2枚選ぶ方法は 青, 黄緑 15×14 5C115C2=5x- -=5.15.7 2 は区別する 必要はない

回答募集中 回答数: 0
数学 高校生

確率の問題です。 2枚目の写真のクとケが分かりません。クは、なぜ条件付き確率を求めるのかを教えていただきたいです。ケは、途中式を丁寧に教えていただきたいです。

第3部~第5間は、いずれか2問を選択し、 解答しなさい。 第3問 (選択問題)(配点20) 赤球と白球が入っている袋がある。 次の操作について考えよう [操作] 袋から球を取り出し、その色を確認してから袋に関す。さらに、取り出し た球と同じ色の球を装に追加する。 この操作を繰り返し行うときを回目に赤を取り出す確率をPとする。 (1) 最初に袋の中に赤球と白球1個が入っているとする。 P 2 イ P₁ = である。また、1回目に赤が取り出され、 2回目にも赤球が取 3 り出される確率は ウ エ 2 である。 (数学Ⅰ・数学A 第3問は次ページに続く。 (2) 最初に袋の中に赤と白 が入っているとする。 1回目に赤が取り出され、 2回目にも赤球が取り出される確率はオ り、1回目に白球が取り出され、 2回目には赤球が取り出される確率はアカ これらを用いて計算すると、袋に入っている球の個数によらず、P=Pzである ことがいえる。 オ @ @ e a at b カの解答〈同じものを繰り返し選んでもよい。) a(a +1) (a+b)(a+b+1) ab (a + b)(a+b+1) b(a+1) (a+b)(a+b+1) (a+b)(a+b+1) (a + 1)² (a+b) (4+6+1) a(b+1) (a+b)(a+b+1) (a + 1)(b +1) (a+b)(a+b+1) Aut alb a (数学Ⅰ・数学A 第3次ページに続

回答募集中 回答数: 0