学年

教科

質問の種類

数学 高校生

この問題の エオで解答2ページを見た時に矢印の変換がなぜそうなるかわからないです(>_<) なぜ上の式からBは-4にならないことがわかるのですか? 教えてください!!!!

例題太郎さんと花子さんは方程式の解の個数に関する問題について話している。 二人の会 話を読んで、下の問いに答えよ。 問題 3次方程式(x-2)(ar2+bx+4)=0 (a,bは定数) が異なる二つの実数解をもつと きαをの式で表せ。 太郎: この3次方程式は (1次式)×(2次式)=0の形になっているから,x-2=0より,一つの実 数解がx=2だとわかるよ。 花子: そうすると, 2次方程式 ax+bx+4=0が残りの一つの実数解をもてばいいから, (i) 2次方程式 ar²+bx+4=0がx=2以外の重解をもつ場合 (ii) 2次方程式 ar2+bx+4=0がx=2ともう一つの異なる解をもつ場合 を考えればいいね。 まずは (i) の場合を考えてみると・・・ 判別式を利用して, a= となるわ イウ 太郎: だけどこれだと2次方程式の解がx=2の場合も含んでいて, 2次方程式の重解がx=2 だと,3次方程式の解は一つになってしまうから 2次方程式の解がx=2となるときを除 外しよう。 花子: そうか。 つまり6 キエオだね。 太郎: その前に他に何か忘れていることはなかったかな? 花子: そういえば, 「3次方程式」 と書いてあるから・・・。 太郎: あっ! そうだ! ar+bx+4は必ず2次式になるから,αキ カだね。 次は, (ii) の場合を考えよう。 a を6で表した式や条件はキ になるね。 (1) ア イウエオ カに当てはまる数値を答えよ。 (2) キに当てはまるものを、次の①~③のうちから一つ選べ。 b2 a= 6-4, 0 16 ①a< 62 16 6-40 a=-(6+2), (6+2), 6-2 11- 11/12 (6+2), 6-4, -2 数学- 26

回答募集中 回答数: 0
数学 高校生

解答の場合分けがこのようになっている理由がわからないです。なぜ1で分けているのか教えて頂きたいです。

回転 36 xy 平面上の2次曲線を 9x2+2√3xy+7y2 = 60 とする.このとき,次の各問いに答えよ. 215-36 と曲線 C は、原点の周りに角度0(001)だけ回転すると, ax2+by2 = 1 の形になる.0 と定数a, b の値を求めよ. (2) 曲線C上の点と点 (c, -√3c) との距離の最小値が2であると き,c の値を求めよ.ただし, c0 とする. アプローチ 〔神戸大〕 (イ)曲線を回転させようと考えるのではありません。曲線上の点を回転さ せて回転後の点の軌跡を求める感覚です. そこで曲線 C上の点を (x, y), これを回転した点を (X, Y) とし,x,yの関係式から x, y を消去して, X, Y の満たすべき関係式を求めると考えます.つまり x, y を X, Y で表 してC の式に代入するというストーリーです。そのためには (X, Y) = 「(x, y) を 0 回転した点」 という関係式ではなく (x, y) = 「(X, Y) を -0 回転した点」 という関係式を立式しましょう。これをC の式に代入したら出来上がり です. (口)点(x, y) を原点を中心に角 0 だけ回転した点を (X, Y) とすると, X + Yi = (cos 0 +isin0)(x + yi) です.実部と虚部を比較すると となります. X = x cos 0 - y sin 0, Y = xsin0 + y cos 0 (2)では曲線 C 上の点と (c, -√3c)との距離を考えるのではなく,とも に回転させた曲線と点との距離を考えます.

回答募集中 回答数: 0
数学 高校生

詳しく解説してください

重要 21 等式を満たす多項式の決定 00000 多項式f(x) はすべての実数xについてf(x+1)-f(x) =2x を満たし,f(0)=1 であるという。 このとき, f(x) を求めよ。 (一橋大 基本15 指針 例えば,f(x)が2次式とわかっていれば,f(x)=ax2+bx+cとおいて進めることが 進める。f(x+1)-f(x) の最高次の項はどうなるかを調べ, 右辺 2x と比較するこ →f(x)はn次式であるとして, f(x)=ax+bx-1+...... (a≠0, n≧1) とおいて できるが,この問題ではf(x) が何次式か不明である。 とで次数nと係数αを求める。 なお,f(x) = (定数) の場合は別に考えておく。 f(x)=1 | この場合は,(*)に含 f(x) =c(cは定数) とすると, f(0)=1から 解答 これはf(x+1)-f(x) =2x を満たさないから,不適。 よって,f(x)=ax+bx"-1+...... (a≠0, n≧1)(*) とす 0=1+v-xl ると f(x+1)-f(x) 1+x=4 =a(x+1)"+6(x+1)"-'+…………-(ax"+bxn-1+…………) =anx-1+g(x) ただし,g(x)は多項式で,次数は n-1より小さい f(x+1)-f(x)=2xはxについての恒等式であるから、最 高次の項を比較して ①から れないため、別に考えて いる。 (x+1)^ =x+nCixcm-1+nCzx-2. のうち, a(x+1)+1-ax" 次の項は anx-1で りの頃は2次以 n-l=1 ・①, an=2. ②なる。 ....... xの次 係数を比較。 n=2 ゆえに、②から a=1 このとき,f(x)=x2+bx+c と表される。 f(0)=1から c=1 またf(x+1)-f(x)=(x+1)2+6(x+1)+c-(x2+bx+c) c=1としてもよ よって =2x+b+1 2.x+b+1=2x この等式はxについての恒等式であるから 結果は同じ b+1=0 係数比較法。 すなわち b=-1 木ゴル したがって f(x)=x-x+1

回答募集中 回答数: 0
数学 高校生

青チャート数2b 21の解説について。段取りはわかったのですがなぜanx^n-1という最高次数の項と2xが比較されているのでしょうか?恒等式というのは存じているのですが、g(x)の中に同じ次数を持ったやつがいる可能性はないのですか? 申し訳ないです。解説お願いします。

重要 例 21 等式を満たす多項式の決定 多項式 f(x) はすべての実数xについてf(x+1)f(x)=2x を満たし, f(0)=1 [一橋大] であるという。このとき, f(x) を求めよ。 指針 例えば、f(x)が2次式とわかっていれば, f(x)=ax2+bx+cとおいて進めることが できるが,この問題ではf(x) が何次式か不明である。 →f(x)はn次式であるとして, f(x)=ax+bx-1+.. (a=0, n ≧1) とおいて 進める。 f(x+1)f(x)の最高次の項はどうなるかを調べ,右辺2x と比較するこ とで次数 n と係数 α を求める。 なお, f(x) = (定数) の場合は別に考えておく。 f(x)=c (cは定数) とすると, f(0) = 1から f(x)=1 解答これはf(x+1)- f(x)=2.x を満たさないから,不適。 よって, f(x)=ax+bxn-1+... ると (a≠0, n ≧1)(*) とす f(x+1)f(x) ...... =a(x+1)"+6(x+1)"'+......-(ax+bx"-1+.....) =anx-1+g(x) ただし, g(x) は多項式で,次数はn-1より小さい。 f(x+1)f(x)=2xはxについての恒等式であるから,最 高次の項を比較して n-l=1 ...... ..0, an=2 ..... ....... よって 2x+6+1=2x この等式はxについての恒等式であるから すなわち b=-1 したがって f(x)=x-x+1 ② b+1=0 基本 15 この場合は, (*)に含ま れないため、別に考えて いる。 ◄(x+1)" ①から n=2 ゆえに、②から a=1 このとき, f(x)=x2+bx+c と表される。 f(0)=1から c=1 またf(x+1)-f(x)=(x+1)^+6(x+1)+c-(x2+bx+c)c=1としてもよいが, =2x+6+1 結果は同じ。 =x"+nCix"-1+nC2x"-2+... のうち, a(x+1)+1-ax” の最高 次の項は anxn-1 で 残 りの頃はn-2次以下と なる。 <anxn-1と2x の次数と 係数を比較。 係数比較法。 POINT 次数が不明の多項式は,n 次と仮定して進めるのも有効

回答募集中 回答数: 0
数学 高校生

共通テスト/数学2B/第2問 タ の解き方を教えて頂きたいです。 よろしくお願いします🙇‍♀️

y = 第2問 (必答問題) (配点 30 ア [1] 太郎さんは、ボールをゴールに蹴り込む ゲームに参加した。 そのゲームは、 右の図1のように地点Oか ら地点Dに向かって転がしたボールを線分 OD 上の一点からゴールに向かって蹴り込み, 地点Aから地点Bまでの範囲にボールが飛 び込んだとき, ゴールしたことにするという ものであった。 13 B A 3m 1 ル xと表すことができる。 2m (第3回 7 ) 0 B そこで太郎さんは、どの位置から蹴るとゴールしやすいかを考えることにした。 地点Oを通り, 直線 ABに垂直な直線上に, AB // CD となるように点Cをとる。 さらに,太郎さんは,Oを原点とし、座標軸を0からCの方向をx軸の正の方向。 OからBの方向をy軸の正の方向となるようにとり、点Pの位置でボールを蹴る ことを図2のように座標平面上に表した。 A ボールが転がされ、 ボールを蹴るライン 9m 図2 このとき, A(0, 2), B (0, 5) であり, ボールを蹴るラインを表す直線の方程式は 図1 3mi (数学ⅡI・数学B 第2問は次ページに続く。) 太郎さんは,最もゴールしやすいのは、∠APB が最大になる地点であると考 えた。 ∠APBが最大となる点Pの座標を求めよう。 Px, ア イ である。 方向となす角をそれぞれα, B (1/2<B<<<12/2)とする。 このとき tand= tan (α-β) (0<x≦9) とし、図2のように、 直線AP, BP がx軸の正の X ウ クケ x+ ∠APB=α-β と表され, APBが夢になることはないから, tan (a-β)を考 えることができる。 1 クケ さらに, tan (a-β)= シス x 5, tanβ = カキ x クケコサx+シス >0であるから, 0x≦9のとき tan (α-β)>0であ る。 コサx+ シス クケ x+ エオ カキ シス XC となり, は最小値 セソをとる。 以上のことから,点Pのx座標がタ コサ と変形でき, 0<x≦9の範囲で のとき, ∠APBは最大である。 (数学ⅡⅠI・数学B 第2問は次ページに続く。) (第3回 8 )

回答募集中 回答数: 0