学年

教科

質問の種類

数学 高校生

ここの問題が全然わかりません…良かったら教えてください…😭

座標平面上において, 点を座標で表し、 図形を方程式で表すことを学んだ。 ここでは、このことを図形の性質の証明に利用することを考える。 考察 △ABC の辺BCの中点をMとすると 3-1 AB+ AC = 2 (AM2+BM2) 2) k² 2 が成り立つことを,どのようにしたら証明できるだろうか。 真さん: 辺 AB の長さを 2 点 A, B間の距離と 14 Leve 5 みて, 座標を利用して考えられないかな。 悠さん: 右のような三角形ABC に対して座標 軸をどのように設定したらよいのかな。 B M C 10 座標を利用して考えると,次のように証明できる。 点Mが原点,辺BCがx軸上になるよ y (ab) A(a,b) うに座標軸を設定すると, △ABCの頂 点 A, B, C の座標は, それぞれ A(a, b), B(-c, 0),C(c, 0) 0=(1+-+- 5 とおくことができる。 このとき # AB2 + AC2 DB(-c, 0) M(0,0) C(c, 0) = ={(a+c)+62}+{(a-c)+62} (a,d) = 2(a²+b²+c²) Ac 2(AM²+BM²) = 2 {(a² + b²)+c²} = 2(a²+b² + c²) したがって AB2 + AC2 = 2 (AM2+BM2) #問15 上の説明では, どのような工夫をして座標軸を設定しているか。 頂点 C の座標をA(a, b), B(c, d), C(e, f) とおいた場合の証明を想定 説明せよ。 図形の性質を証明するには、座標を用いて次のようにするとよい。 1 座標軸を適当に設定し、 図形の関係を数式で表す。 2 得られた数式を用いて計算する。 3 計算結果を図形的に解釈する。 1 賀

回答募集中 回答数: 0
数学 高校生

赤い線を引いたところが,なぜなのか分かりません💦

コメント 結果的にいえば、2つの円の方程式を の方 x2+y^-5=0……①,r'+y^-6x+2y+5=0 とするとき2円の交点を通る直線は ①②であっさり求められるわけです. 最初聞いたときは, 「えっ、なんで?」と思ったものですが,すでに説明した ように,「①,②」と「①-②②」の同値関係を考えることで説明できるわ けですね. すが 奈良 この「同値」の考え方の威力を感じていただくために,次のような問題を絡 介しておきましょう. 例題 平面上に3つの円があり,どの2つの円も異なる2点で交わっているも のとする.各2円の異なる2つの交点を結ぶ3つの直線は1点で交わるこ とを示せ. 設定がとても一般的ですので,解こうにも何から手を つけてよいのかわからないような問題ですね.ところが, 図形と方程式の考え方を用いれば,ほとんど計算をする ことなく証明できてしまうのです. まず,3つの円を一般形 (x'+y' + lxc+my+n=0の 形)で表した方程式を ① ② ③とします.すると,①と②の2つの交点を通 る直線は 「①-②」, ②と③の2つの交点を通る直線は 「②③」, ①と③の2 つの交点を通る直線は 「①③」 と表せます. (2x 2-3 この +2①-2 (1)(2 これは、 (3) 一致する ②③ ①+ 1-3 けば ③ ことな る ここで 件は、 が成り立つことです ①③=(①-②)+(②-31- 0 (S) なのですから, 「①-② ②③」 と 「①③ ② ③」は同値です。 つまり、 それぞれの直線の交点は一致するわけですから,3直線は1点で交わります.

回答募集中 回答数: 0
数学 高校生

この下の例題で、各円の方程式を引いたらそれぞれの交点を通るのは分かるのですが、「ここで」の後がいまいちピンと来ません。丁寧に解説お願いしたいです

90 第3章 図形と方程式 コメント 結果的にいえば、 2つの円の方程式を x² + y²-5=0, x²+y²−6x+2y+5=0__····· とすると円の交点を通る直線は①②であっさり求められるわけです。 最初聞いたときは, 「えっ、なんで?」 と思ったものですが,すでに説明した ように, 「①②」 と 「①-②, ②」の同値関係を考えることで説明できるわ けですね. 「この「同値」の考え方の威力を感じていただくために,次のような問題を紹 介しておきましょう. 例題 平面上に3つの円があり,どの2つの円も異なる2点で交わっているも のとする.各2円の異なる2つの交点を結ぶ3つの直線は1点で交わるこ るので、 とを示せ . 設定がとても一般的ですので,解こうにも何から手を つけてよいのかわからないような問題ですね. ところが上回 図形と方程式の考え方を用いれば、 ほとんど計算をする ことなく証明できてしまうのです. まず3つの円を一般形 (x2+y^+lx+my+n=0の 形)で表した方程式を ① ② ③とします. すると, ①と②の2つの交点を通 る直線は「①-②」,②と③の2つの交点を通る直線は 「②③」, ①と③の2 つの交点を通る直線は 「①③」 と表せます. 「ここで 一致する 2-3813 ①ONOS 1359 1-3=(1-2)+(2-3) 1-= del なのですから, ①②, ②-③」 と 「①-③, ② - ③」は同値です.つまり、 それぞれの直線の交点は一致するわけですから、3直線は1点で交わります。 し

回答募集中 回答数: 0