学年

教科

質問の種類

数学 高校生

(2)はなぜ場合分けをするのかがわからないです!

不等式がす つ条件 (絶対不等式) 日本 例題 109グラフ 22:10基本軍) (英国 125, 基本例題 p.159 基本事項6 (1) すべての実数xに対して, 2次不等式 x2+(k+3)x-k> 0 が成り立つような 定数kの値の範囲を求めよ。 (2) 任意の実数xに対して,不等式 ax²-2√3x+a+2≦0が成り立つような定 数αの値の範囲を求めよ。 指針 2次式の定符号a≠0 D=62-4ac とする。 ········· #kax²+bx+c>0⇒a>0, D<0 #kax²+bx+c≥0⇒a>0, D≤0 常に ax²+bx+c<0⇔a<0, D<0 常に ax2+bx+c≦0⇔a<0, D≦0 (1) x^2の係数は 1(正) であるから, D<0が条件。 (2) 単に「不等式」とあるから a=0(2次不等式で ない)の場合とa=0 の場合に分ける。 演習 00000 a=0のとき, ax²-2√3x+a+2=0の判別式をDとす ると、常に不等式が成り立つための必要十分条件は a<0 かつD/4=(-√3)a(a+2)≦0は a < 0 かつ a2+2a-3≧0 (a+3)(a-1)≧0 BIKEOL すなわち a²+2a-3≧0から よって 1≦a ≦-3, a<0 との共通範囲を求めて a≤-3 8> 解答 の係数が1で正であるから、常に不等式が成り立 | 「すべての実数x」または「任意の実 つための必要十分条件は,係数について (k+3)²−4•1•(−k)<0 よって (+9)(k+1)<0 ゆえに k² +10k +9 < 0 ゆえに-9<k <-1 数x」 に対して不等式が成り立つと は、その不等式の解が,すべての実 数であるということ (2)a=0のとき,不等式は-2√3x+2≦0 となり,例え ばx=0のとき成り立たない。 + [a>0, D<0] X 0<0+ x [ a < 0, D<0] 19 = (1) の D<0は,下に凸の放物線が常 にx軸より上側にある条件と同じ。 20> (1) -2√3x+2≦0の解はx≧ ²7/3² √√3 CIAN またはx グラフがx軸に接する. 軸より下側にある条件と同じであ D 4 るから. <0 <0ではなく10と 4 する。 5 2章 13 2次不

未解決 回答数: 0
数学 高校生

数Iの絶対不等式の問題です。 黄色マーカー部分が分からないので解説をお願いします。(自分が書いた左のような図ではダメなのでしょうか、、、。) よろしくお願いします。

例題 106 絶対不等式 [2] すべての実数xについて, 不等式(k-2)x+2(k-1)x+3k-5>0が成 RACIS り立つような定数kの値の範囲を求めよ。 思考プロセス 例題105との違い・・・問題文では,単に「不等式」となっており, 「2次不等式」とは限らない 4例題83 hout ≪R Action 最高次の係数が文字のときは,かどうかで場合分けせよ BRETRIKOSet 場合に分ける 不等式 >0 ② より D k-2=0のとき 1次関数 y= <IF 解 f(x) = (k-2)x+2(k-1)x+3k-5 とおく。 (ア)=2のとき 与えられた不等式は 2x+1> 0 これはすべての実数xについて成り立つとはいえない。 (イ)2のとき すべての実数x について f(x) > 0 が成り立つのは, 2次関数 y=f(x) のグラフが下に凸であり, x軸と共 有点をもたないときである。 よって, f(x)=0 の判別式をDとすると >2…. ① か *k-2=0のとき 2次関数y= (k-1)^(k-2)(3k-5) -2k² +91-9 -(2k-8)(k-3) < 0 k< よって ゆえに ん=2, ①, ③ より (ア), () より 求めるんの値の範囲は k>3 (2k-3) k-3) > 0 2 常にx軸より上側にある。 -3 <h のグラフが 常にx軸より上側にある。 上?下? 「グラフは [ ] に凸の放物線 [グラフとx軸の共有点は 2. のグラフが y=f(x) (+) に限られる。 x ! 不等式の解は x>-- 2 24hx+y=f(x) 下に凸 D<0 x もし、 グラフが上に凸で あれば、次の図のように f(x) ≧0 となる部分がも 在する。 - y=f(x) f x e AG adım ①の条件を忘れないよ にする。

解決済み 回答数: 1
数学 高校生

1番です。記述に問題ないですか?

180 00000 基本例題 113 絶対不等式 (1) すべての実数xに対して, 2次不等式x+(k+3)x-k> 0 が成り立つような 定数kの値の範囲を求めよ。 (2) 任意の実数xに対して,不等式 ax^²-2√3x+a+2≦0 が成り立つような定 数αの値の範囲を求めよ。 p.171 基本事項 ⑥ 「演習129 指針 2次式の定符号 2次式 ax2+bx+cについて D=62-4ac とする。 ·········!」 常に ax2+bx+c>0⇔a> 0, D < 0 常に ax'+bx+c<0⇔a<0, D<0 (1) x²の係数は 1 (正) であるから, D<0が条件。 常に ax2+bx+c≧0⇔a> 0, D≦0 常に ax²+bx+c≦0⇔a<0, D≦0 (2) 単に「不等式」 とあるから, α=0 (2次不等式で ない)の場合とa≠0)の場合に分ける。 [補足 ax²+bx+c>0 に対して, a=0 の場合も含め ると,次のようになる。 解答 (1) x²の係数が1で正であるから 常に不等式が成り立 つための必要十分条件は、 2次方程式 x2+(k+3)x-k=0 の判別式をDとすると D<0 D=(k+3)^-4・1・(-k) =k²+10k+9= (k+9)(k+1) であるから, D<0より (k+9)(+1) < 0 ゆえに -9<k<-1 + 常に ax+bx+c>0⇔a=b=0, c>0; または α > 0, D < 0 + [a>0, D<0] a=0のとき, 2次方程式 ax²-2√3x+α+2=0の判別 式をDとすると,常に不等式が成り立つための必要十 分条件は a<0 かつ D≦0 (*) 2=(-√3)a(a+2)=-a²-2a+3=-(a+3)(a-1) であるから, D≦0 より よって an-3, 1≦a 「すべての実数x」または「任意の実 数x」 に対して不等式が成り立つと は, その不等式の解が, すべての 数であるということ。 (1) の D<0 は, 下に凸の放物線が常 にx軸より上側にある条件と同じ。 (2) a=0のとき, 不等式は-2√3x+2≦0 となり、 例え (*) グラフがx軸に接する, また ばx=0のとき成り立たない。 はx軸より下側にある条件と同じ であるから, D< 0 ではなく D≦0と する。 (a+3)(a-1)≧0 a<0 との共通範囲を求めて すべての実数について、 2次不等式 ax+bx+c>0) が成り立つ ⇔2次関数y=ax²+bx+cのグラフが常にx軸より上側にある a> (下に凸) かつ D=6-4ac < 0 (x軸との共有点がない) nor [a < 0, D<0] a≤-3 Ne + [a> 0, D<0]

回答募集中 回答数: 0
数学 高校生

2番のa≠0の時です。 頭の中でa<0かつD≦0でなければならないと想像した時に これを文章化することができませんでした。 解答を見ればこのような書き方をすればいいのかと分かったのですが記述に必要十分条件と書くのに懸念があります。 どのような時に必要十分条件と書けばいいんで... 続きを読む

180 00000 基本例題 113 絶対不等式 (1) すべての実数xに対して, 2次不等式x+(k+3)x-k> 0 が成り立つような 定数kの値の範囲を求めよ。 (2) 任意の実数xに対して,不等式 ax^²-2√3x+a+2≦0 が成り立つような定 数αの値の範囲を求めよ。 p.171 基本事項 ⑥ 「演習129 指針 2次式の定符号 2次式 ax2+bx+cについて D=62-4ac とする。 ·········!」 常に ax2+bx+c>0⇔a> 0, D < 0 常に ax'+bx+c<0⇔a<0, D<0 (1) x²の係数は 1 (正) であるから, D<0が条件。 常に ax2+bx+c≧0⇔a> 0, D≦0 常に ax²+bx+c≦0⇔a<0, D≦0 (2) 単に「不等式」 とあるから, α=0 (2次不等式で ない)の場合とa≠0)の場合に分ける。 [補足 ax²+bx+c>0 に対して, a=0 の場合も含め ると,次のようになる。 解答 (1) x²の係数が1で正であるから 常に不等式が成り立 つための必要十分条件は、 2次方程式 x2+(k+3)x-k=0 の判別式をDとすると D<0 D=(k+3)^-4・1・(-k) =k²+10k+9= (k+9)(k+1) であるから, D<0より (k+9)(+1) < 0 ゆえに -9<k<-1 + 常に ax+bx+c>0⇔a=b=0, c>0; または α > 0, D < 0 + [a>0, D<0] a=0のとき, 2次方程式 ax²-2√3x+α+2=0の判別 式をDとすると,常に不等式が成り立つための必要十 分条件は a<0 かつ D≦0 (*) 2=(-√3)a(a+2)=-a²-2a+3=-(a+3)(a-1) であるから, D≦0 より よって an-3, 1≦a 「すべての実数x」または「任意の実 数x」 に対して不等式が成り立つと は, その不等式の解が, すべての 数であるということ。 (1) の D<0 は, 下に凸の放物線が常 にx軸より上側にある条件と同じ。 (2) a=0のとき, 不等式は-2√3x+2≦0 となり、 例え (*) グラフがx軸に接する, また ばx=0のとき成り立たない。 はx軸より下側にある条件と同じ であるから, D< 0 ではなく D≦0と する。 (a+3)(a-1)≧0 a<0 との共通範囲を求めて すべての実数について、 2次不等式 ax+bx+c>0) が成り立つ ⇔2次関数y=ax²+bx+cのグラフが常にx軸より上側にある a> (下に凸) かつ D=6-4ac < 0 (x軸との共有点がない) nor [a < 0, D<0] a≤-3 Ne + [a> 0, D<0]

未解決 回答数: 1
数学 高校生

線を引いている部分か分からないのですが、なぜt2乗の係数か正ならば判別式D<0になるのですか? 理由を教えてください🙇‍♀️

重要 例題 16 ベクトルの大きさの条件と絶対不等式 00000 k は実数の定数とする。 |a| = 2, ||=3, la-6=√7 とするとき \ka+t6 > √3 がすべての実数tに対して成り立つようなんの値の範囲を求め よ。 基本15 指針 として扱うの考え方が基本となる。 まずは一部=(√7) を考えることで, a ・ の値を求めておく。 tz, \ka+tb\>√3 l£|kã+tỏľ²>(√3)² ① と同値である。 )-ÃO (S) ① を変形して整理すると pt2+gt+r>0(>0)の形になるから, 数学Ⅰで学習した, 次の ことを利用して解決する。 2 次不等式 at'+bt+c> 0 が常に成り立つ... (*) ための必要十分条件は] D=62-4ac とすると a>0 かつ D<0 HOAS Toll 【CHART はとして扱う 解答 la-3=7から よって (à−b)·(a−b)=7 ゆえに a-2a+1=7 |a| =2, ||=3であるから 4-2à·6+9=7 )=D したがって à b=3 làơ=(VT) ‡†, \kã+tb|>√3 l£|kã+tb|²>3 ① を変形すると k²la²+2kta-b+t²|b1²>3 D< 0 から よって ...... ...... 266450<hale ** 0³20-713|15|--Bnielā||5)=20 D<0 すなわち 9t2+6kt+4k²-3> 0 Monte ② がすべての実数tについて成り立つための必要十分条件は, t の2次方程式 9t2+6kt+4k²-3=0 の判別式をDとすると, ①2の係数が正であるから ここで =(3k)2-9(4k²-3) =-27k²+27=-27(k²-1) =-27(k+1)(-1) (k+1)(k-1) > 0 k <-1, 1<h C ① と同値である。 <A>0, B>0のとき A>B⇒A²>B² 46.406基本例題 15 (1) と同 じ要領。 195 指針の(*)のように すべて の実数に対して成り立つ不等 式を 絶対不等式 という。 y=at2+bt+c + + TS [a>0, D<0]

解決済み 回答数: 1