数学
高校生
解決済み

数Iの絶対不等式の問題です。
黄色マーカー部分が分からないので解説をお願いします。(自分が書いた左のような図ではダメなのでしょうか、、、。)
よろしくお願いします。

例題 106 絶対不等式 [2] すべての実数xについて, 不等式(k-2)x+2(k-1)x+3k-5>0が成 RACIS り立つような定数kの値の範囲を求めよ。 思考プロセス 例題105との違い・・・問題文では,単に「不等式」となっており, 「2次不等式」とは限らない 4例題83 hout ≪R Action 最高次の係数が文字のときは,かどうかで場合分けせよ BRETRIKOSet 場合に分ける 不等式 >0 ② より D k-2=0のとき 1次関数 y= <IF 解 f(x) = (k-2)x+2(k-1)x+3k-5 とおく。 (ア)=2のとき 与えられた不等式は 2x+1> 0 これはすべての実数xについて成り立つとはいえない。 (イ)2のとき すべての実数x について f(x) > 0 が成り立つのは, 2次関数 y=f(x) のグラフが下に凸であり, x軸と共 有点をもたないときである。 よって, f(x)=0 の判別式をDとすると >2…. ① か *k-2=0のとき 2次関数y= (k-1)^(k-2)(3k-5) -2k² +91-9 -(2k-8)(k-3) < 0 k< よって ゆえに ん=2, ①, ③ より (ア), () より 求めるんの値の範囲は k>3 (2k-3) k-3) > 0 2 常にx軸より上側にある。 -3 <h のグラフが 常にx軸より上側にある。 上?下? 「グラフは [ ] に凸の放物線 [グラフとx軸の共有点は 2. のグラフが y=f(x) (+) に限られる。 x ! 不等式の解は x>-- 2 24hx+y=f(x) 下に凸 D<0 x もし、 グラフが上に凸で あれば、次の図のように f(x) ≧0 となる部分がも 在する。 - y=f(x) f x e AG adım ①の条件を忘れないよ にする。
絶対不等式

回答

✨ ベストアンサー ✨

定義域がないので、書いてくれた図の場合でも、xがもっと大きくなったり小さくなったりすれば、負の部分が生じてしまいますね。

α

ありがとうございました。

この回答にコメントする
疑問は解決しましたか?